
~APH
COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

The RADIANCE Lighting Simulation and Rendering System

Gregory J. Ward

Light ing Group
Bui ld ing Technologies Program
Lawrence Berkeley Laboratory

(e-mail: GJWard@Lbl .Gov)

ABSTRACT

This paper describes a physically-based rendering system
tailored to the demands of lighting design and architecture. The
simulation uses a light-backwards ray-tracing method with
extensions to efficiently solve the rendering equation under most
conditions. This includes specular, diffuse and directional-
diffuse reflection and transmission in any combination to any
level in any environment, including complicated, curved
geometries. The simulation blends deterministic and stochastic
ray-tracing techniques to achieve the best balance between speed
and accuracy in its local and global illumination methods. Some
of the more interesting techniques are outlined, with references
to more detailed descriptions elsewhere. Finally, examples are
given of successful applications of this free software by others.

CR Categories: 1.3.3 [Computer Graphics]: Picture/image gen-
eration Display algorithms; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism - Shading.
Additional Keywords and Phrases: lighting simulation, Monte
Carlo, physically-based rendering, radiosity, ray-tracing.

1. Introduction
Despite voluminous research in global illumination and radiosity
over the past decade, few practical applications have surfaced in
the fields that stand the most to benefit: architecture and lighting
design. Most designers who use rendering software employ it in
a purely illustrative fashion to show geometry and style, not to
predict lighting or true appearance. The designers cannot be
blamed for this; rendering systems that promote flash over con-
tent have been the mainstay of the graphics industry for years,
and the shortcuts employed are well-understood by the software
community and well-supported by the hardware manufacturers.

Why has radiosity not yet taken off in the rendering
market? Perhaps not enough time has passed since its introduc-
tion to the graphics community a decade ago [8]. After all, it
took ray-tracing nearly that long to become a mainstream, com-
mercial rendering technique. Another possibility is that the
method is too compute-intensive for most applications, or that it
simply does not fulfill enough people's needs. For example,
most radiosity systems are not well automated, and do not permit
general reflectance models or curved surfaces. If we are unable
to garner support even from the principal beneficiaries,
designers, what does that say of our chances with the rest of the
user community?

Acceptance of physically-based rendering is bound to
improve#, but researchers must first demonstrate the real-life
applicability of their techniques. There have been few notable
successes in applying radiosity to the needs of practicing
designers [6]. While much research has focused on improving
efficiency of the basic radiosity method, problems associated
with more realistic, complicated geometries have only recently
gotten the attention they deserve [2,19,22]. For whatever reason,
it appears that radiosity has yet to fulfill its promise, and it is
time to reexamine this technique in light of real-world applica-
tions and other alternatives for solving the rendering equation
[10].

There are three closely related challenges to physically-
based rendering for architecture and lighting design: accuracy,
generality and practicality. The first challenge is that the calcu-
lation must be accurate; it must compute absolute values in phy-
sical units with reasonable certainty. Although recent research
in global illumination has studied sources of calculation error
[1,20], few researchers bother to compute in physical lighting
units, and even fewer have compared their results to physical
experiments [15]. No matter how good the theory is, accuracy
claims for simulation must ultimately be backed up with com-
parisons to what is being simulated. The second challenge is
that a rendering program must be general. It is not necessary to
simulate every physical lighting phenomenon, but it is important
to do enough that the unsolvable rendering problems are either
unimportant or truly exceptional. The third challenge for any
rendering system is that it be practical. This includes a broad
spectrum of requirements, from being reliable (i.e. debugged and
tested) to being application-friendly, to producing good results in
a reasonable time. All three of the above challenges must be met
if a physically-based rendering package is to succeed, and all
three must be treated with equal importance.

Radiance is the name of a rendering system developed by
the author over the past nine years at the Lawrence Berkeley
Laboratory (LBL) in California and the Ecole Polytechnique
Federale de Lausanne (EPFL) in Switzerland. It began as a
study in ray-tracing algorithms, and after demonstrating its
potential for saving energy through better lighting design,
acquired funding from the U.S. Department of Energy and later
from the Swiss government. The first free software release was
in 1989, and since then it has found an increasing number of
users in the research and design community. Although it has
never been a commercial product, Radiance has benefited enor-

~The term "physically-based rendering" is used throughout the paper to
refer to rendering techniques based on physical principles of light behavior
for local and global illumination. The term "simulation" is more general,
referring to any algorithm that mimics a physical process.

459

Permission to make digital or hard copies of part or all of this work
or personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a
fee.
SIGGRAPH ’94, July 24-29, Orlando, Florida
© ACM 1994 ISBN: 0-89791-667-0 ...$5.00

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

mously from the existence of an enthusiastic, active and growing
user base, which has provided invaluable debugging help and
stress-testing of the software. In fact, most of the enhancements
made to the system were the outcome of real or perceived user
requirements. This is in contrast to the much of the research
community, which tends to respond to intriguing problems
before it responds to critical ones. Nine years of user-stimulated
software evolution gives us the confidence to claim we have a
rendering system that goes a long way towards satisfying the
needs of the design community. Further evidence has been pro-
vided by the two or three design companies who have abandoned
their own in-house software (some of which cost over a million
dollars to develop) in favor of Radiance.

In this paper, we describe the Radiance system design
goals, followed with the principal techniques used to meet these
goals. We follow with examples of how users have applied
Radiance to specific problems, followed by conclusions and
ideas for future directions.

2. System Design Goals
The original goals for the Radiance system were modest, or so
we thought. The idea was to produce an accurate tool for light-
ing simulation and visualization based on ray-tracing. Although
the initial results were promising, we soon learned that there was
much more to getting the simulation right than plugging proper
values and units into a standard ray-tracing algorithm. We
needed to overcome some basic shortcomings. The main
shortcoming of conventional ray-tracing is that diffuse
interreflection between surfaces is approximated by a uniform
"ambient" term. For many scenes, this is a poor approximation,
even if the ambient term is assigned correctly. Other difficulties
arise in treating light distribution from large sources such as win-
dows, skylights, and large fixtures. Finally, reflections of lights
from mirrors and other secondary sources are problematic.
These problems, which we will cover in some detail later, arose
from the consideration of our system design goals, given below.

The principal design goals of Radiance were to:

1. Ensure accurate calculation of luminance
2. Model both electric light and daylight
3. Support a variety of reflectance models
4. Support complicated geometry
5. Take unmodified input from CAD systems

These goals reflect many years of experience in architec-
tural lighting simulation; some of them are physically-motivated,
others are user-motivated. All of them must be met before a
lighting simulation tool can be of significant value to a designer.

2.1. Ensure Accurate Calculation of Luminance
Accuracy is one of the key challenges in physically-based
rendering, and luminance (or the more general "spectral radi-
ance") is probably the most versatile unit in lighting. Pho-
tometric units such as luminance are measured in terms of visi-
ble radiation, and radiometric units such as radiance are meas-
ured in terms of power (energy/time). Luminance represents the
quantity of visible radiation passing through a point in a given

2 direction, measured in lumens/steradian/meter in SI units.
Radiance is the radiometric equivalent of luminance, measured
in watts/steradian/meter 2. Spectral radiance simply adds a
dependence on wavelength to this. Luminance and spectral radi-
ance are most closely related to a pixel, which is what the eye
actually "sees." From this single unit, all other lighting metrics
can be derived, llluminance, for example, is the integral of lumi-

• - 2)) , , - nance over a projected hemisphere (lumens/meter or lux m SI
units). Luminous intensity and luminous flux follow similar
derivations. By computing the most basic lighting unit, our
simulation will adapt more readily to new applications.

460

To assure that a simulation delivers on its promise, it is
essential that the program undergo periodic validation. In our
case, this means comparing luminance values predicted by Radi-
ance to measurements of physical models. An initial validation
was completed in 1989 by Grynberg [9], and subsequent valida-
tions by ourselves and others confirm that the values are getting
better and not worse [14].

2.2. Model Both Electric Light and Daylight
In order to be general, a lighting calculation must include all
significant sources of illumination. Daylight simulation is of
particular interest to architects, since the design of the building
facade and to a lesser degree the interior depends on daylight
considerations.

Initially, Radiance was designed to model electric light in
interior spaces. With the addition of algorithms for modeling
diffuse interreflection [25], the software became more accurate
and capable of simulating daylight (both sun and sky contribu-
tions) for building interiors and exteriors. The role of daylight
simulation in Radiance was given new importance when the
software was chosen by the International Energy Agency (IEA)
for its daylight modeling task* [4].

2.3. Support a Variety of Reflectance Models
Luminance is a directional quantity, and its value is strongly
determined by a material's reflectance/transmittance distribution
function. If luminance is calculated using a Lambertian (i.e. dif-
fuse) assumption, specular highlights and reflections are ignored
and the result can easily be wrong by a hundred times or more.
We cannot afford to lose directional information if we hope to
use our simulation to evaluate visual performance, visual com-
fort and aesthetics.

A global illumination program is only as general as its
local illumination model. The standard model of ambient plus
diffuse plus Phong specular is not good enough for realistic
image synthesis. Radiance includes the ability to model arbi-
trary reflectance and transmittance functions, and we have also
taken empirical measurements of materials and modeled them
successfully in our system [29].

2.4. Support Complicated Geometry
A lighting simulation of an empty room is not very interesting,
nor is it very informative. The contents of a room must be
included if light transfer is to be calculated correctly. Also, it is
difficult for humans to evaluate aesthetics- based on visualiza-
tions of empty spaces. Furniture, shadows and other details pro-
vide the visual cues a person needs to understand the lighting of
a space. Modeling exteriors is even more challenging, often
requiring hundreds of thousands of surfaces.

Although we leave the definition of "complicated
geometry" somewhat loose, including it as a goal means that we
shall not limit the geometric modeling capability of our simula-
tion in any fundamental way. To be practical, data structure size
should grow linearly (at worst) with geometric complexity, and
there should be no built-in limit as to the number of surfaces. To
be accurate, we shall support a variety of surface primitives, also
ensuring our models are as memory-efficient as possible. To be
general, we shall provide N-sided polygons and a mechanism for
interpolating surface normals, so any reasonable shape may be
represented. Finally, computation time should have a sublinear
relationship to the number of surfaces so that the user does not
pay an unreasonable price for accurate modeling.

*The lEA is a consortium of researchers from developed nations coopera-
tively seeking alternative energy sources and ways of improving energy
efficiency in their countries•

2.5. Take Unmodified Input from CAD Systems
If we are to model complicated geometry, we must have a practi-
cal means to enter these models into our simulation. The crea-
tion of a complicated geometric model is probably the most
difficult task facing the user. It is imperative that the user be
allowed every means to simplify this task, including advanced
CAD systems and input devices. If our simulation limits this
process in any way, its value is diminished.

Therefore, to the greatest degree possible, we must accept
input geometry from any CAD environment. This is perhaps the
most difficult of the goals we have outlined, as the detail and
quality of CAD models varies widely. Many CAD systems and
users produce only 2D or wireframe models, which are next to
useless for simulation. Other CAD systems, capable of produc-
ing true 3D geometric models, cannot label the component sur-
faces and associate the material information necessary for an
accurate lighting simulation. These systems require a certain
degree of user intervention and post-processing to complete the
model. Even the most advanced CAD systems, which produce
accurate 3D models with associated surface data, do not break
surfaces into meshes suitable for a radiosity calculation. The
missing information must either be added by the user, inferred
from the model, or the need for it must be eliminated. In our
case, we eliminate this need by using something other than a
radiosity (i.e. finite element) algorithm.

CAD translators have been written for AutoCAD, GDS,
ArchiCAD, DesignWorkshop, StrataStudio, Wavefront, and
Architrion, among others. None of these translators requires
special intervention by the user to reorient surface normals, elim-
inate T-vertices, or mesh surfaces. The only requirement is that
surfaces must somehow be associated with a layer or identifier
that indicates their material type.

3. Approach
We have outlined the goals for our rendering system and linked
them back to the three key challenges of accuracy, generality
and practicality. Let us now explore some of the techniques we
have found helpful in meeting these goals and challenges.

We start with a basic description of the problem we are
solving and how we go about solving it in section 3.1, followed
by specific solution techniques in sections 3.2 to 3.5. Sections
3.6 to 3.9 present some important optimizations, and section
3.10 describes the overall implementation and use of the system.

3.1. Hybrid Deterministic/Stochastic Ray Tracing
Essentially, Radiance uses ray-tracing in a recursive evaluation
of the following integral equation at each surface point:

Lr (Or ,dr) = Le (Or ,d#r) + (1)
2~

~ L,(e,,¢,)O~,d(Oi,~i ;0r,~r) I cosO~ I sin0i dO i d¢~i
0 0

where:
0 is the polar angle measured from the surfacenormal

is the azimuthal angle measured about the surface normal
Le (Or ,f~r) 2 is the emitted radiance (watts/steradian/meter in SI units)
Lr (Or ,f~r)

is the reflected radiance
Li(Oi,f~i)

is the incident radiance
Pba (0i ,~i ;Or ,~r)

is the bidirectional reflectance-transmittance distribution
function (steradian -I)

This equation is essentially Kajiya's rendering equation [10]
with the notion of energy transfer between two points replaced

COMPUTER GRAPHICS Proceedin0s, Annual Conference Series, 1994

by energy passing through a point in a specific direction (i.e. the
definition of radiance). This formula has been documented
many times, going back before the standard definition of 13bd
[16]. Its generality and simplicity provide the best foundation
for building a lighting simulation.

This formulation of the rendering problem is a natural for
ray tracing because it gives outgoing radiance in terms of incom-
ing radiance over the projected sphere, without any explicit men-
tion of the model geometry. The only thing to consider at any
one time is the light interaction with a specific surface point, and
how best to compute this integral from spawned ray values.
Thus, no restrictions are placed on the number or shape of sur-
faces or surface elements, and discretization (meshing) of the
scene is unnecessary and even irrelevant.

Although it is possible to approximate a solution to this
equation using uniform stochastic sampling (i.e. Monte Carlo),
the convergence under most conditions is so slow that such a
solution is impractical. For example, a simple outdoor scene
with a ground plane, a brick and the sun would take days to com-
pute using naive Monte Carlo simply because the sun is so small
(0.5 ° of arc) in comparison to the rest of the sky. It would take
many thousands of samples per pixel to properly integrate light
coming from such a concentrated source.

The key to fast convergence is in deciding what to sam-
ple by removing those parts of the integral we can compute
deterministically and gauging the importance of the rest so as to
maximize the payback from our ray calculations. In the case of
the outdoor scene just described, we would want to consider the
sun as an important contribution to be sampled separately, thus
removing the biggest source of variance from our integral.
Instead of relying on random samples over the hemisphere, we
send a single sample ray towards the sun, and if it arrives unob-
structed, we use a deterministic calculation of the total solar con-
tribution based on the known size and luminosity of the sun as a
whole. We are making the assumption that the sun is not par-
tially occluded, but such an assumption would only be in error
within the penumbra of a solar shadow region, and we know
these regions to represent a very small portion of our scene.

Light sources cause peaks in the incident radiance distri-
bution, L i (0 i,~i). Directional reflection and transmission cause
peaks in the scattering function, Pbd" This will occur for
reflective materials near the mirror angle, and in the refracted
direction of dielectric surfaces (e.g. glass). Removing such peak
reflection and transmission angles by sending separate samples
reduces the variance of our integral at a comparatively modest
cost. This approach was introduced at the same time as ray-
tracing by Whitted [31]. Further improvements were made by
adding stochastic sampling to the deterministic source and spec-
ular calculations by Cook in the first real linking of stochastic
and deterministic techniques [5]. Radiance employs a tightly
coupled source and specular calculation, described in [29].

3.2. Cached Indirect Irradiances for Diffuse lnterreflection
No matter how successful we are at removing the specular
reflections and direct illumination from the integral (1), the cost
of determining the remaining diffuse indirect contributions is too
great to recalculate at every pixel because this requires tracing
hundreds of rays to reduce the variance to tolerable levels.
Therefore, most ray-tracing calculations ignore diffuse
interreflection between surfaces, using a constant "ambient" term
to replace the missing energy.

Part of the reason a constant ambient value has been
accepted for so long (other than the cost of replacing it) is that
diffuse interreflection changes only gradually over surfaces.
Thus, the contrast-sensitive eye usually does not object to the
loss of subtle shading that accompanies an ambient approxima-
tion. However, the inaccuracies that result are a problem if one

461

SIGGRAPH 94, Orlando,Florida, July 24-29, 1994

wants to know light levels or see the effects of daylight or
indirect lighting systems.

Since indirect lighting changes gradually over surfaces, it
should be possible to spread out this influence over many pixels
to obtain a result that is smooth and accurate at a modest sam-
pling cost. This is exactly what we have done in Radiance. The
original method for computing and using cached irradiance
values [25] has been enhanced using gradient information [28].

The basic idea is to perform a full evaluation of Equation
(1) for indirect diffuse contributions only as needed, caching and
interpolating these values over each surface. Direct and specular
components are still computed on a per-pixel basis, but hemis-
pherical sampling occurs less frequently. This gives us a good
estimate of the indirect diffuse contribution when we need it by
sending more samples than we would be able to afford for a
pixel-independent calculation. The approach is effectively simi-
lar to finite element methods that subdivide surfaces into
patches, calculate accurate illumination at one point on each
patch and interpolate the results. However, an explicit mesh is
not used in our method, and we are free to adjust the density of
our calculation points in response to the illumination environ-
ment. Furthermore, since we compute these view-independent
values only as needed, separate form factor and solution stages
do not have to complete over the entire scene prior to rendering.
This can amount to tremendous savings in large architectural
models where only a portion is viewed at any one time.

Figure I looks down on a diffuse sphere in a room with
indirect lighting only. A blue dot has been placed at the position
of each indirect irradiance calculation. Notice that the values are
irregularly spaced and denser underneath the sphere, on the
sphere and near the walls at the edges of the image. Thus, the
spacing of points adapts to changing illumination to maintain
constant accuracy with the fewest samples.

To compute the indirect irradiance at a point in our scene,
we send a few hundred rays that are uniformly distributed over
the projected hemisphere. If any of our rays hits a light source,
we disregard it since the direct contribution is computed
separately. This sampling process is applied recursively for mul-
tiple reflections, and it does not grow exponentially because each
level has its own cache of indirect values.

lighter background object

Z 7
dad~er foreground object

i
- - - . 4k

Fiaure 2: Irradiance gradients due to bright and dark objects in the environment.

Our hemisphere samples not only tell us the total indirect
illumination, they also give us more detailed information about
the locations and brightnesses of surfaces visible from the
evaluation point. This information may be used to predict how
irradiance will change as a function of point location and surface
orientation, effectively telling us the first derivative (gradient) of
the irradiance function. For example, we may have a bright
reflecting surface behind and to the fight of a darker surface as
shown in Figure 2. Moving our evaluation point to the right
would yield an increase in the computed irradiance (i.e. the
translational gradient is positive in this direction), and our sam-
ples can tell us this. A clockwise rotation of the surface element

462

would also cause an increase in the irradiance value (i.e. the
rotational gradient is positive in this direction), and our hemi-
sphere samples contain this information as well. Formalizing
these observations, we have developed a numerical approxima-
tion to the irradiance gradient based on hemisphere samples.
Unfortunately, its derivation does not fit easily into a general
paper, so we refer the reader to the original research [28].

1~0-

8 -

2 -

0 6-
C

10

12

5 -

-5-

-10

v

W
cD >

I I I I

I I I i

2 4 6 8

Y P o s i t i o n

I I I I

10

I I ! I

2 4 6 8 10

Linear

__C_ubi_c____

...bn~al

Linear

--qubi_c ---

Figure 3a,b. Plots showing the superiority of gradient interpo-
lation for indirect irradiance values. The reference curve is an
exact calculation of the irradiance along the red line in Figure
1. The linear interpolation is equivalent to Gouraud shading
between evenly spaced points, as in radiosity rendering. The
Hermite cubic interpolation uses the gradient values computed
by Radiance, and is not only smoother but demonstrably more
accurate than a linear interpolation.

Knowing the gradient in addition to the value of a func-
tion, we can use a higher order interpolation method to get a
better irradiance estimate between the calculated points. In
effect, we will obtain a smoother and more accurate result
without having to do any additional sampling, and with very lit-
tle overhead. (Evaluating the gradient formulas costs almost
nothing compared to computing the hemisphere samples.)

Figure 3a shows the irradiance function across the floor of
Figure 1, along the red line. The exact curve is shown overlaid
with a linearly interpolated value between regularly spaced cal-

COMPUTER GRAPHICS Proceedin~ls, Annual Conference Series, 1994

I : i~uro 1. F, luo ciol~ show ct l lculct l i ()n
poi nl~ I'()r di I'ftl~o i nlOFFollot'l ion.
(7oo I: i~tiro ,4 l'O!4Llrclin!~ rol l l i l lo.) I:i~4ure .~. ,\ I hea lo r h()u~e li$~hlin!- ~inlulc l l i ()n. ' l 'he ~lr i t i lecl

~hcict<)ws (>n lho I'l<x)i" : i re c':l~l by lho cLllwcilks Llb()vo.

1:i~4ure <)a. ,k d rc l f l in~ <)l'lice w i l h cl mirr(>r l i~h l shell"
s l i c in~ Iho w i n d o w Lincl roct i rot ' l in~ l i~h l i.ipwLirct~.

I:i~ur'e ')c'. ,\ v i~ut i l izcl l i ()n o1' lhe i l l umincu lco levels
(>n lho i'o()nl ~tli'l'Lit'o~ in iho cJr'Liflin~ oFFice.

I:i~ure~)b. A Nlonle(:arlosimul:ll i<>n rendered i n l h e
S:.illlO l i l l le :Is ~)Ll, sh()win~ lhe r 'osul l in~ noise.

I : i ~ u r o I I . A c a b i n in ct I(>v'esl usin~ hiercu'chic:d
()t'Iroos l() m(x.lol (>vor ct million pirio needles.

463

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

culation points, and a Hermite cubic interpolation using com-
puted gradients. The cubic interpolation is difficult to separate
from the exact curve. Figure 3b shows the relative error for
these two interpolation methods, clearly demonstrating the
advantage of using gradient information.

Caching indirect irradiances has four important advan-
tages over radiosity methods. First, no meshing is required,
since a separate octree data structure is used to hold the calcu-
lated values. This lifts restrictions on geometric shapes and
complexity, and greatly simplifies user input and scene analysis.
Second, we only have to compute those irradiances affecting the
portion of the scene being viewed. This speeds rendering time
under any circumstance, since our view-independent values may
be reused in subsequent images (unlike values computed with
importance-driven radiosity [20]). Third, the density of irradi-
ance calculations is reduced at each level of interreflection,
maintaining constant accuracy while reducing the time required
to compute additional bounces. Fourth, the technique adapts to
illumination by spacing values more closely in regions where
there may be large gradients, without actually using the gradient
as a criterion. This eliminates errors that result from using initial
samples to decide sampling density [12], and improves accuracy
overall. The gradient is used to improve value interpolation,
yielding a smoother and more accurate result without the Mach-
bands that can degrade conventional radiosity images.

3.3. Adaptive Sampling of Light Sources
Although sending one sample ray to each light source is quite
reasonable for outdoor scenes, such an approach is impractical
for indoor scenes that may have over a hundred light sources.
Most rays in a typical calculation are in fact shadow rays. It is
therefore worth our while to rule out light sources that are unim-
portant and avoid testing them for visibility.

The method we use in Radiance for reducing the number
of shadow rays is described in [26]. A prioritized list of poten-
tial source contributions is created at each evaluation of Equa-
tion (1). The largest potential contributors (contribution being a
function of source output, proximity and Pbd) are tested for sha-
dows first, and we stop testing when the remainder of the source
list is below some fraction of the unoccluded contributions. The
remaining source contributions are then added based on statisti-
cal estimates of how likely each of them is to be visible.

Figure 4 shows a simple example of how this works. The
left column represents our sorted list of potential light source
contributions for a specific sample point. We proceed down our
list, checking the visibility of each source by tracing shadow
rays, and summing together the unobstructed contributions.
After each test, we check to see if the remainder of our potential
contributions has fallen below some specified fraction of our
accumulated total. If we set our accuracy goal to 10%, we can
stop testing after four light sources because the remainder of the
list is less than 10% of our known direct value. We could either
add all of the remainder in or throw it away and our value would
still be within 10% of the correct answer. But we can do better
than that; we can make an educated guess at the visibility of the
remaining sources using statistics. Taking the history of
obstructed versus unobstructed shadow rays from previous tests
of each light source, we multiply this probability of hitting an
untested source by the ratio of successful shadow tests at this
point over all successful shadow tests (2/(.9+.55+.65+.95) ==
0.65 in this example), and arrive at a reasonable estimate of the
remainder. (If any computed multiplier is greater than 1, 1 is
used instead.) Our total estimate of the direct contribution at
this point is then the sum of the tested light sources and our sta-
tistical estimate of the remainder, or 1616 in this example.

We have found this method to be very successful in
reducing the number of shadow test rays required, and it is possi-

464

Potential

1053

750

600

520

100

30

11

6

2

0

History

90%

55%

65%

95%

30% .._~...,...~,,.

100% ~..-.w"

20% / / / / ~

6O%

15%

Visibile? 5Urn of Test, ed

F Yes ~ '~- 1573

No f Maximum Remainder

No I I 149

Yes

Remainder Estimate

x0.65 - ~ J 43 J

90%

75%

Fiaure 4: Adaptive shadow testing algorithm, explained in Section 3.4.

ble to place absolute bounds on the error of the approximation.
Most importantly, this type of adaptive shadow testing
emphasizes contrast as the primary decision criterion. Contrast
is defined as the difference between the luminance at a point and
the background luminance divided by the background lumi-
nance. If a shadow boundary is below the visible contrast thres-
hold, then an error in its calculation is undetectable by the
viewer. Thus, this method produces no visible artifacts in its
tradeoff of speed for accuracy. Accuracy is still lost in a con-
trolled way, but the resulting image is subjectively flawless, due
to the eye's relative insensitivity to absolute light levels.

Figure 5 shows a theater lighting simulation generated by
Radiance in 1989. This image contains slightly over a hundred
light sources, and originally took about 4 days to render on a
Sun-C260. (The equivalent of about 5 Vax-l l /780 's .) Using
our adaptive shadow testing algorithm reduced the rendering
time to 2 days for the same imaget. The time savings for scenes
with more light sources can be better than 70%, especially if the
light sources have narrow output distributions, such as the
spotlights popular in overlighted retail applications.

A different problem associated with ray-per-source sha-
dow testing is inadequate sampling of large or nearby sources,
which threatens simulation accuracy. For example, a single ray
cannot adequately sample a fluorescent desk lamp for a point
directly beneath it. The simplest approach for sources that are
large relative to their distance is to send multiple sample rays.
Unfortunately, breaking a source into pieces and sending many
rays to it is inefficient for distant points in the room. Again, an
adaptive sampling technique is the most practical solution.

In our adaptive technique, we send multiple rays to a light
source if its extent is large relative to its distance. We recur-
sively divide such sources into smaller pieces until each piece
satisfies some size/distance criterion. Figure 6a shows a long,
skinny light source that has been broken into halves repeatedly
until each source is small enough to keep penumbra and solid

tThe theater model was later rendered in [2] using automatic meshing and

progressive radiosity. Meshing the scene caused it to take up about 100
Mbytes of memory, and rendering took over 18 hours on an SGI R3000
workstation for the direct component alone, compared to 5 hours in I I

Mbytes using Radiance on the same computer.

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

Fiaure 6a: Linear light source is adaptively split to minimize falloff and visibility errors.

Fiaure 6b: Area light source is subdivided in two dimensions rather than one.

angle errors in check. Figure 6b shows a similar subdivision of a
large rectangular source. A point far away from either source
will not result in subdivision, sending only a single ray to some
(randomly) chosen location on the source to determine visibility.

3.4. Automatic Preprocessing of "Virtual" Light Sources
Thus far we have accounted for direct contributions from known
light sources, specular reflections and transmission, and diffuse
interreflections. However, there are still transfers from specular
surfaces that will not be handled efficiently by our calculation.
A mirror surface may reflect sunlight onto a diffuse or semispec-
ular surface, for example. Although the diffuse interreflection
calculation could in principle include such an effect, we are
returning to the original problem of insufficient sampling of an
intense light source. A small source reflected specularly is still
too small to find in a practical number of naive Monte Carlo
samples. We have to know where to look.

We therefore introduce "virtual" light sources that do not
exist in reality, but are used during the calculation to direct sha-
dow rays in the appropriate directions to find reflected or other-
wise transferred light sources. This works for any planar sur-
face, and has been implemented for mirrors as well as prismatic
glazings (used in daylighting systems [4]). For example, a
planar mirror might result in a virtual sun in the mirror direction
from the real sun. When a shadow ray is sent towards the virtual
sun, it will be reflected off the mirror to intersect the real sun.
An example is shown in Figure 7a. This approach is essentially
the same as the "virtual worlds" idea put forth by Rushmeier
[18] and exploited by Wallace [24], but it is only carried out for
light sources and not for all contributing surfaces. Thus, multi-
ple transfers between specular surfaces can be made practical
with this method using intelligent optimization techniques.

The first optimization we apply is to limit the scope of a
virtual light source to its affected volume. Given a specific
source and a specific specular surface, the influence is usually
limited to a certain projected volume. Points that fall outside
this volume are not affected and thus it is not necessary to con-
sider the source everywhere. Furthermore, multiple reflections
of the source are possible only within this volume. We can thus
avoid creating virtual-virtual sources in cases where the volume
of one virtual source fails to intersect the second reflecting sur-

,-,,trot ~ Z I \

..ELg.tlL~..Z.~: Virtual source caused by mirror reflection.

...... S~ \

i

Fiaure 7b: Source reflection in mirror A cannot intersect
mirror B, so no virtual-virtual source is created.

. \ 1 /

Fiaure 7c: Source rays cannot reach mirror surface, so no virtual source is created.

face, as shown in Figure 7b. The same holds for thrice
redirected sources and so on, and the likelihood that virtual
source volumes intersect becomes less likely each time, provided
that the reflecting surfaces do not occupy a majority of the space.

To minimize the creation of useless virtual light sources,
we check very carefully to confirm that the light in fact has some
free path between the source and the reflecting surface before
creating the virtual source. For example, we might have an
intervening surface that prevents all rays from reaching a
reflecting surface from a specific light source, such as the situa-
tion shown in Figure 7c. We can test for this condition by send-
ing a number of presampling rays between the light source and
the reflecting surface, assuming if none of the rays arrives that
the reflecting path must be completely obstructed. Conversely,
if none of the rays is obstructed, we can save time during sha-
dow testing later by assuming that any ray arriving at the
reflecting surface in fact has a free path to the source, and further
ray intersection tests are unnecessary. We have found presam-
pling to be very effective in avoiding wasteful testing of com-
pletely blocked or unhindered virtual light source paths.

Figure 8 shows a cross-section of an office space with a
light shelf having a mirrored top surface. Exterior to this office
is a building with a mirrored glass facade. Figure 9a shows the
interior of the office with sunlight reflected by the shelf onto the
ceiling. Light has also been reflected by the exterior, glazed
building. Light shelf systems utilize daylight very effectively
and are finding increasing popularity among designers.

To make our calculation more efficient overall, we have
made additional use of "secondary" light sources, described in
the next section.

465

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

Light distribution
on ceiling

//

Light distribution
on window

Mirrored upper surface

Figure 6: Crossection of office space with mirrored light shelf.

3.5. User-directed Preprocessing of "Secondary" Sources
What happens when daylight enters a space through a skylight or
window? If we do not treat such "secondary" emitters specially
in our calculation, we will have to rely on the ability of the naive
Monte Carlo sampling to find and properly integrate these con-
tributions, which is slow. Especially when a window or skylight
is partially obscured by venetian blinds or has a geometrically
complex configuration, computing its contribution requires
significant effort. Since we know a priori that such openings
have an important influence on indoor illumination, we can
greatly improve the efficiency of our simulation by removing
them from the indirect calculation and treating them instead as
part of the direct (i.e. source) component.

Radiance provides a practical means for the user to move
such secondary sources into the direct calculation. For example,
the user may specify that a certain window is to be treated as a
light source, and a separate calculation will collect samples of
the transmitted radiation over all points on the window over all
directions, a 4-dimensional function. This distribution is then
automatically applied to the window, which is treated as a secon-
dary light source in the final calculation. This method was used
in Figure 9a not only for the windows, but also for light reflected
by the ceiling. Bright solar patches on interior surfaces can
make important contributions to interior illumination. Since this
was the desired result of our mirrored light shelf design, we
knew in advance that treating the ceiling as a secondary light
source might improve the efficiency of our calculation. Using
secondary light sources in this scene reduced simulation time to
approximately one fifth of what it would have been to reach the
same accuracy using the default sampling techniques.

Figure 9b shows a Monte Carlo path tracing calculation
of the same scene as 9a, and took roughly the same amount of
time to compute. The usual optimizations of sending rays to
light sources (the sun in this case) and in specular directions
were used. Nevertheless, the image is very noisy due to the
difficulty of computing interreflection independently at each
pixel. Also, locating the sun reflected in the mirrored light shelf
is hopeless with naive sampling; thus the ceiling is extremely
noisy and the room is not as well lit as it should be.

An important aspect of secondary light sources in Radi-
ance is that they have a dual nature. When treated in the direct
component calculation, they are merely surfaces with precalcu-
lated output distributions. Thus, they can be treated efficiently
as light sources and the actual variation that may take place over
their extent (e.g. the bright and dark slats of venetian blinds) will

4 6 6

not translate into excessive variance in the calculated illumina-
tion. However, when viewed directly, they revert to their origi-
nal form, showing all the appropriate detail. In our office scene
example, we can still see through the window despite its treat-
ment as a secondary light source. This is because we treat a ray
coming from the eye differently, allowing it to interact with the
actual window rather than seeing only a surface with a smoothed
output distribution. In fact, only shadow rays see the Simplified
representation. Specular rays and other sampling will be carried
out as if the window was not a light source at all. As is true with
the computation of indirect irradiance described in section 3.2,
extreme care must be exercised to avoid double-counting of light
sources and other inconsistencies in the calculation.

E

C
o

o
e
x
uJ

>

E

3.6. Hierarchical Octrees for Spatial Subdivision
One of the goals of our simulation is to model very complicated
geometries. Ray-tracing is well-suited to calculations in compli-
cated environments, since spatial subdivision structures reduce
the number of ray-surface intersection tests to a tiny fraction of
the entire scene. In Radiance, we use an octree spatial subdivi-
sion scheme similar to that proposed by Glassner [7]. Our octree
starts with a cube encompassing the entire scene, and recursively
subdivides the cube into eight equal subcubes until each voxel
(leaf node) intersects or contains less than a certain number of
surfaces, or is smaller than a certain size.

1 . 0 I I I I

0.8-

0.6-

0.4-

0.2-

0.0

Data
A

x^.245

i i i i

sooo ~oooo ~5ooo 20000

N u m b e r of Su r f aces

Figure 10. Plot showing sublinear relationship of intersection
time to number of surfaces in a scene. The best fit for ~ in this
test was 0.245, meaning the ray intersection time grew more
slowly than the fourth root of N . The spheres were kept small
enough so that a random ray sent from the field's interior had
about a 50% chance of hitting something. (I.e. the sphere radii
were proportional to N 1/3.) This guarantees that we are really
seeing the cost of complicated geometry, since each ray goes by
many surfaces.

Although it is difficult to prove in general, our empirical
tests show that the average cost of ray intersection using this
technique grows as a fractional power of the total number of sur-
faces, i.e. O (N v) where T < 1/2. The time to create the octree
grows linearly with the number of surfaces, but it is usually only
a tiny fraction of the time spent rendering. Figure 10 shows the
relationship between ray intersection time and number of sur-
faces for a uniformly distributed random field of spheres.

The basic surface primitives supported in Radiance are
polygons, spheres and cones. Generator programs provide
conversion from arbitrary shape definitions (e.g. surfaces of

revolution, prisms, height fields, parametric patches) to these
basic types. Additional scene complexity is modeled using
hierarchical instancing, similar to the method proposed by
Snyder [21]. In our application of instancing, objects to be
instanced are stored in a separate octree, then this octree is
instanced along with other surfaces to create a second, enclosing
octree. This process is repeated as many times and in as many
layers as desired to produce the combined scene. It is possible to
model scenes with a virtually unlimited number of surfaces
using this method.

Figure 11 shows a cabin in a forest. We began with a
simple spray of 150 needles, which were put into an octree and
instanced many times and combined with twigs to form a
branch, which was in turn instanced and combined with larger
branches and a trunk to form a pine tree. This pine tree was then
put in another octree and instanced in different sizes and orienta-
tions to make a small stand of trees, which was combined with a
terrain and cabin model to make this scene. Thus, four hierarch-
ical octrees were used together to create this scene, which con-
tains over a million surfaces in all. Despite its complexity, the
scene still renders in a couple of hours, and the total data struc-
ture takes less than 10 Mbytes of RAM.

3.7. Patterns and Textures
Another practical way to add detail to a scene is through the
appropriate infusion of surface detail. In Radiance, we call a
variation in surface color and/or brightness a pattern, and a per-
turbation of the surface normal a texture. This is more in keep-
ing with the English definitions o f these words, but sometimes at
odds with the computer graphics community, which seems to
prefer the term "texture" for a color variation and "bump-map"
for a perturbation of the surface normal. In any case, we have
extended the notion somewhat by allowing patterns and textures
to be functions not only of surface position but also of surface
normal and ray direction so that a pattern, for example, may also
be used to represent a light source output distribution.

Our treatment of pattems and textures was inspired by
Perlin's flexible shading language [17], to which we have added
the mapping of lookup functions for multi-dimensional data.
Using this technique, it is possible to interpret tabulated or image
data in any manner desired through the same functional language
used for procedural patterns and textures.

Figure 12 shows a scene with many patterns and textures.
The textures on the vases and oranges and lemons are pro-
cedural, as is the pattern on the bowl. The pattern on the table is
scanned, and the picture on the wall is obviously an earlier
rendering. Other patterns which are less obvious in this scene
are the ones applied to the three light sources, which define their
output distributions. The geometry was created with the genera-
tor programs included with Radiance, which take functional
specifications in the same language as the procedural patterns
and textures. The star patterns are generated using a Radiance
filter option that uses the pixel magnitude in deciding how much
to spread the image, showing one advantage of using a floating-
point picture format [27]. (The main advantage of this format is
the ability to adjust exposure after rendering, taking full advan-
tage of tone mapping operators and display calibration [23,30].)

3.8. Parallel Processing
One of the most practical ways to reduce calculation time is with
parallel processing. Ray-tracing is a natural for parallel process-
ing, since the calculation of each pixel is relatively independent.
However, the caching of indirect irradiance values in Radiance
means that we benefit from sharing information between pixels
that may or may not be neighbors in one or more images. Shar-
ing this information is critical to the efficiency of a parallel com-
putation, and we want to do this in a system-independent way.

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

We have implemented a coarse-grained, multiple instruc-
tion, shared data (MISD) algorithm for Radiance renderingt.
This technique may be applied to a single image, where multiple
processes on one or more machines work on small sections of
the image simultaneously, or to a sequence of images, where
each process works on a single frame in a long animation. In the
latter case, we need only worry about the sharing of indirect irra-
diance values on multiple active invocations, since dividing the
image is not an issue. The method weuse is described below.

Indirect irradiance values are written to a shared file
whose contents are checked by each process prior to update. If
the file has grown, the new values (produced by other processes)
are read in before the irradiances computed by this process are
written out. File consistency is maintained through the NFS lock
manager, thus values may be shared transparently across the net-
work. Irradiance values are written out in blocks big enough to
avoid contention problems, but not so big that there is a lot of
unnecessary computation caused by insufficient value sharing.
We found this method to be much simpler, and about as
efficient, as a remote procedure call (RPC) approach.

Since much of the scene information is static throughout
the rendering process, it is wasteful to have multiple copies on a
multi-processing platform that is capable of sharing memory. As
with value sharing, we wished to implement memory sharing in
a system-independent fashion. We decided to use the memory
sharing properties of the UNIX fork(2) call. All systems capa-
ble of sharing memory do so during fork on a copy-on-write
basis. Thus, a child process need not be concerned that it is
sharing its parent's memory, since it will automatically get its
own memory the moment it stores something. We can use this
feature to our advantage by reading in our entire scene and ini-
tializing all the associated data structures before forking a pro-
cess to run in parallel. So long as we do not alter any of this
information during rendering, we will share the associated
memory. Duplicate memory may still be required for data that is
generated during rendering, but in most cases this represents a
minor fraction of our memory requirements.

3.9. Animation
Radiance is often used to create walk-through animations of
static environments. Though this is not typically the domain of
ray-tracing renderers, we employ some techniques to make the
process more efficient. The most important technique is the use
of recorded depth information at each pixel to interpolate fully
ray-traced frames with a z-buffer algorithm. Our method is
similar to the one explained by Chen et al [3], where pixel
depths are used to recover an approximate 3-dimensional model
of the visible portions of the scene, and a z-buffer is used to
make visibility decisions for each intermediate view. This
makes it possible to generate 30 very good-looking frames for
each second of animation while only having to render about 5 of
them. Another technique we use is unique to Radiance, which
is the sharing of indirect irradiance values. Since these values
are view-independent, there is no sense in recomputing them
each time, and sharing them during the animation process distri-
butes the cost over so many frames that the incremental cost of
simulating diffuse interreflection is negligible.

Finally, it is possible to get interactive frame rates from
advanced rendering hardware using illumination maps instead of
ray-tracing the frames directly. (An illumination map is a 2-
dimensional array of color values that defines the surface shad-
ing.) Such maps may be kept separate from the surfaces' own
patterns and textures, then combined during rendering. Specular

tData sharing is of course limited in the case of distributed processors,

where each node must have its own local copy of scene data structures.

467

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

I:ie>uro 1 2. i \ s l i l l l i lo imci~o ~ l low i i l~ oxclmplos o1
procodui ' t l l ~incl ~t';.lllllod l(. 'xluro~ ;incl pcll loi 'n~.

7

/

I : i~ure 14. ikn i nd i rec l l i ~h l i n~s) '~ Ion l w c i s d e s i ~ n e d l o reduce I:i~,uro 1$. S l c l ~ o l i ~ h l i n ~ s i n l u l c l l i o n .
.t.,>lctro Oll nl() l l i lOrN ill I11o [,()lldOll /JlldOr~l'()Ullct C()lllr()l t 'on lor .

468

COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1994

RADIANCE File Types
Data Type Format Created by Used for

Scene Description ASCII text text editor, CAD translator geometry, materials, patterns, textures
Function File ASCII text text editor surface tessellation, patterns, textures,

scattering functions, coordinate map-
pings, data manipulation

Data File ASCII integers and luminaire data translator, text editor N-dimensional patterns, textures,
floats scattering functions

Polygonal Font ASCII integers Hershey set, font design system, font text patterns, label generator
translator, text editor

Octree Binary scene compiler (oconv) fast ray intersection, incremental scene
compilation, object instancing

Picture run-length encoded renderer, filter, image translator interactive display, hard copy, lighting
4-byte/pixel analysis, material pattern, rendering
floating-point recovery

Ambient File Binary renderer, point value program sharing view-independent indirect irra-
diance values

f

Table 1. All binary types in Radiance are portable between systems, and have a standard information header specifying the format and
the originating command(s).

surfaces will not appear correct since they depend on the
viewer's perspective, but this may be a necessary sacrifice when
user control of the walk-through is desired. Interactive rendering
has long been touted as a principal advantage of radiosity, when
in fact complete view-independence is primarily a side-effect of
assuming diffuse reflection. Radiance calculates the same
values using a ray-tracing technique, and storage and rendering
may even be more efficient since large polygons need not be
subdivided into hundreds of little ones -- an illumination map
works just as well or better.

3.10. Implementation Issues
Radiance is a collection of C programs designed to work in con-
cert, communicating via the standard data types listed in Table 1.
The system may be compiled directly on most UNIX platforms,
including SGI, Sun, HP, DEC, Apple (A/UX), and IBM
(RS/6000). Portability is maintained over 60,000+ lines of code
using the Kernighan and Ritchie standard [1 I] and conservative
programming practices that do not rely on system-specific
behaviors or libraries. (In addition to UNIX support, there is a
fairly complete Amiga port by Per Bojsen, and a limited MS-
DOS port by Karl Grau.)

A typical rendering session might begin with the user
creating or modifying a geometric model of the space using a
CAD program. (The user spends about 90% of the time on
geometric modeling.) The CAD model is then translated into a
Radiance scene description file, using either a stand-alone pro-
gram or a function within the CAD system itself. The user
might then create or modify the materials, patterns and textures
associated with this model, and add some objects from a library
of predefined light sources and furnishings. The completed
model would then be compiled by oconv into an octree file,
which would be passed to the interactive renderer, rview, to ver-
ify the desired view and calculation parameters. Finally, a batch
rendering would be started with rpict, and after a few minutes or
a few hours, the raw picture would be filtered (i.e. anti-aliased
via image reduction) by pfilt using a suitable exposure level and
target resolution. This finished picture may be displayed with
ximage, translated to another format, printed, or further analyzed
using one of the many Radiance image utilities. This illustrates
the basic sequence of:

model --o convert ~ render --~ filter ~ display

all of which may be put in a single pipelined command if
desired.

As Radiance has evolved over the years, it has become
increasingly sophisticated, with nearly 100 programs that do
everything from CAD translation to surface tessellation to light-
ing calculations and rendering to image filtering, composition
and conversion. With this sophistication comes great versatility,
but learning the ins and outs of the programs, even the few
needed for simple rendering, is impractical for most designers.

To overcome system complexity and improve the reliabil-
ity of rendering results, we have written an executive control
program, called rad. This program takes as its input a single file
that identifies the material and scene description files needed as
well as qualitative settings related to this environment and the
simulation desired. The control program then calls the other
programs with the proper parameters in the proper sequence.

The intricacies of the Radiance rendering pipeline are
thus replaced by a few intuitive variable settings. For example,
there is a variable called "DETAIL", which might be set to "low"
for an empty room, "medium" for a room with a few pieces of
furniture and "high" for a complicated room with many furnish-
ings and textures. This variable will be used with a few others
like it to determine how many rays to send out in the Monte
Carlo sampling of indirect lighting, how closely to space these
values, how densely to sample the image plane, and so on. One
very important variable that affects nearly all rendering parame-
ters is called "QUALITY". Low quality renderings come out
quickly but may not look as good as medium quality renderings,
and high quality renderings take a while but when they finish,
the images can go straight into a magazine article.

This notion of replacing many algorithm-linked rendering
parameters with a few qualitative variables has greatly improved
the usability of Radiance and the reliability of its output. The
control program also keeps track of octree creation, secondary
source generation, aborted job recovery, image filtering and
anti-aliasing, and running the interactive renderer. The encoding
of expertise in this program has been so successful, in fact, that
we rely on it ourselves almost 100% for setting parameters and
controlling the rendering process.

Although the addition of a control program is a big
improvement, there are still many aspects of Radiance that are
not easily accessible to the average user. We have therefore
added a number of utility scripts for performing specific tasks
from the more general functions that constitute the system. One
example of this is the falsecolor program, which calls other
image filter programs and utilities to generate an image showing
luminance contours or other data associated with a scene or

469

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

rendering. Figure 9c shows our previous rendering (Figure 9a)
superimposed with illuminance contours. These contours tell the
lighting designer if there is enough light in the right places or too
much light in the wrong places -- information that is difficult to
determine from a normal image'L

Even with a competent rendering control program and
utility scripts for accomplishing specific tasks, there are still
many designers who would not want to touch this system with
an extended keyboard. Modem computer users expect a list of
pull-down menus with point-and-click options that reduce the
problem to a reasonably small and understandable set of alterna-
tives. We are currently working on a graphical user interface
(GUI) to the rad control program, which would at least put a
friendlier face on the standard system. A more effective long-
term solution is to customize the rendering interface for each
problem domain, e.g. interior lighting design, daylighting, art,
etc. Due to our limited resources and expertise, we have left this
customization task to third parties who know more about specific
applications, and who stand to benefit from putting their GUI on
our simulation engine. So far, there are a half dozen or so
developers working on interfaces to Radiance.

4. Applications and Results
The real proof of a physically-based rendering system is the
problems it solves. Here we see how well we have met the chal-
lenges and goals we set out. Radiance has been used by hun-
dreds of people to solve thousands of problems over the years.
In the color pages we have included some of the more recent
work of some of the more skilled users. The results have been
grouped into two application areas, electric lighting problems
and daylighting problems.

4.1. Electric Lighting
Electric lighting was the first domain of Radiance, and it contin-
ues to be a major strength. A model may contain any number of
light sources of all shapes and sizes, and the output distributions
may be entered as either near-field or far-field data. The dual
nature of light sources (mentioned in section 3.5) also permits
detailed modeling of fixture geometry, which is often important
in making aesthetic decisions.

There are several application areas where electric lighting
is emphasized. The most obvious application is lighting design.
Figure 13 shows a comparative study between three possible
lighting alternatives in a hotel lobby space. Several other
designs were examined in this exploration of design visualiza-
tion. With such a presentation, the final decision could be safely
left to the client.

One design application that requires very careful analysis
is indirect lighting. Figure 1,4. shows a simulation of a new con-
trol center for the London Underground. The unusual arrange-
ment of upwardly directed linear fluorescents was designed to
provide general lighting without affecting the visibility of the
central display panel (image left).

Stage lighting is another good application of physically-
based rendering. The designs tend to be complex and changing,
and the results must be evaluated aesthetically (i.e. visually).
Figure 15 shows a simulation of a scene from the play Julius
Caesar. Note the complex shadows cast by the many struts in
the stage set. Computing these shadows with a radiosity algo-
rithm would be extremely difficult.

tActually, Radiance pictures do contain physical values through a combi-
nation of the 4-byte floating-point pixel representation and careful tracking
of exposure changes [27], but the fidelity of any physical image presentation
is limited by display technology and viewing conditions. We therefore pro-
vide the convenience of extracting numerical values with our interactive
display program.

4.2. Daylighting
Daylight poses a serious challenge to physically-based render-
ing. It is brilliant, ever-changing and ever-present. At first, the
daylight simulation capabilities in Radiance were modest, lim-
ited mostly to exteriors and interiors with clear windows or
openings. Designers, especially architects, wanted more. They
wanted to be able to simulate light through venetian blinds, intri-
cate building facades and skylights. In 1991, the author was
hired on sabbatical by EPFL to improve the daylight simulation
capabilities of Radiance, and developed some of the techniques
described earlier in this paper. In particular, the large source
adaptive subdivision, virtual source and secondary source calcu-
lations proved very important for daylighting problems.

The simplest application of daylight is exterior modeling.
Many CAD systems have built-in renderers that will compute
the solar position from time of day, year, and location, and gen-
erate accurate shadows. In addition to this functionality, we
wanted Radiance to show the contributions of diffuse skylight
and interreflection. Figure 16 shows the exterior of the Mellen-
camp Pavillion, an Indiana University project that recently
acquired funding (along with its name).

A more difficult daylighting problem is atrium design*.
Designing an atrium requires thorough understanding of the day-
light availability in a particular region to succeed. Figure 17
shows an atrium space modeled entirely within Radiance,
without the aid of a CAD program [13]. The hierarchical con-
struction of Radiance scene files and the many programmable
object generators makes text-editor modeling possible, but most
users prefer a "mousier" approach.

Daylighted interiors pose one of the nastiest challenges in
rendering. Because sunlight is so intense, it is usually diffused
or baffled by louvers or other redirecting systems. Some of these
systems can be quite elaborate, emphasizing the need for simula-
tion in their design. Figure 18 shows the interior of the pavillion
from Figure 16. Figure 19 shows a library room illuminated by
a central skylight. Figure 20a shows a simulation of a daylighted
museum interior. Daylight is often preferred in museums as it
provides the most natural color balance for viewing paintings,
but control is also very important. Figure 20b shows a false
color image of the illuminance values on room surfaces; it is
critical to keep these values below a certain threshold to minim-
ize damage to the artwork.

5. Conclusion
We have presented a physically-based rendering system that is
accurate enough, general enough, and practical enough for the
vast majority of lighting design and architectural applications.
The simulation uses a light-backwards ray-tracing method with
extensions to handle specular, diffuse and directional-diffuse
reflection and transmission in any combination to any level in
any environment. Not currently included in the calculation are
participating media, diffraction and interference, phosphores-
cence, and polarization effects. There is nothing fundamental
preventing us from modeling these processes, but so far there
has been little demand for them from our users.

The principle users of Radiance are researchers and edu-
cators in public and private institutions, and lighting specialists
at large architectural, engineering and manufacturing firms.
There are between 100 and 200 active users in the U.S. and
Canada, and about half as many overseas. This community is
continually growing, and as the Radiance interface and docu-
mentation improves, the growth rate is likely to increase.

*An atrium is an enclosed courtyard with a glazed roof structure for maxim-
izing daylight while controlling the indoor climate.

470

COMPUTER GRAPHICS Proceedinqs, Annual Conference Series, 1994

I:i~Lli'O 1(>. I)osi~n ()1 the ik'lollon('cUlll~ I> : l v i l l i on ,
c'UlTOnl I>" t l l l t lOl " t ' () l lSl I ' t i t ' l i on Lll Incl iculcl
l I n i vo r~ i l> "

I ' iou i " .,> i C' 1~. l i l l o i ' i () r v i c 'w ()1' k lo l loncCUll l~
I> : lv i l l i ()n , ~it~()vo.

/ 7~iTiiii#!i~i!ii~i~iiiiii!i!ii!iii~Tili~iT!!!TiiTilil;~> ~

I: i~cu'o 17. I I .K. , , ' \ l l ' i t ln l c los i~ l l m()c le lod w i l l l () t i l I h o
b(_'llol' i l ()1" Li (] i \ l) ~g>'~gl(_'lll, t iSi l l (()111> I~,LidiClllt'O
st'on(_', o(_'.ll(.'lLil i on t l l i l i l ion.

I : i~u l 'o I t) . I n d i : u l : t I In iVor~ i l> ' l i lbr :u ' \ sP: lco,
i l l L m l i n : d o (] t~\' ~[col l l j ' : d n k > l i ~ l l l .

I : i~l l l 'O 2():.l. i\r! ~t l le , '> ' i l l L m l i n : d o d lb\' sk> ' l i~h lN. I : i~u i 'o Z()D. (] () i ' l ' onp ()nd i l l ~ ~uu'l':.l('o i l lLmlin~.UlCOn.

4'7]

SIGGRAPH 94, Orlando, Florida, July 24-29, 1994

For the graphics research community, we hope that Radi-
ance will provide a basis for evaluating new physically-based
rendering techniques. To this end, we provide both the software
source code and a set of precomputed test cases on our ftp
server. The test suite includes diffuse and specular surfaces
configured in a simple rectangular space with and without
obstructions. More complicated models are also provided in
object libraries and complete scene descriptions.

6. Acknowledgements
Most of the color figures in this paper represent the independent work of
Radiance users, and are reprinted with permission. Figure 5 was created
by Charles Ehrlich from a design by Mark Mack Architects of San Fran-
cisco. Figure 11 was created by Cindy Larson. Figures 12 and 13 were
created by Martin Moeck of Siemens Lighting, Germany. Figure 14 was
created by Steve Walker of Ove Arup and Partners, London. Figure 15
was created by Robert Shakespeare of the Theatre Computer Visualiza-
tion Center at Indiana University. Figures 16, 18 and 19 were created by
Scott Routen and Reuben McFarland of the University Architect's Office
at Indiana University. Figures 17 and 20 were created by John Mardal-
jevic of the ECADAP Group at De Montfort University, Leicester.

The individuals who have contributed to Radiance through their
support, suggestions, testing and enhancements are too numerous to
mention. Nevertheless, I must offer my special thanks to: Peter Apian-
Bennewitz, Paul Bourke, Raphael Compagnon, Simon Crone, Charles
Ehrlich, Jon Hand, Paul Heckbert, Cindy Larson, Daniel Lucias, John
Mardaljevic, Kevin Matthews, Don McLean, Georg Mischler, Holly
Rushmeier, Jean-Louis Scartezzini, Jennifer Schuman, Veronika Sum-
meraur, Philip Thompson, Ken Turkowski, and Florian Wenz.

Work on Radiance was sponsored by the Assistant Secretary for
Conservation and Renewable Energy, Office of Building Technologies,
Buildings Equipment Division of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098. Additional funding was provided
by the Swiss federal government as part of the LUMEN Project.

7. Software Availability
Radiance is available by anonymous ftp from two official sites:

hobbes.lbl.gov 128.3.12.38 Berkeley, Califomia
nestor.epfl.ch 128.178.139.3 Lausanne, Switzerland

For convenience, Radiance 2.4 has been included on the CD-ROM ver-
sion of these proceedings.

From Mosaic, try the following URL:
file://hobbes.lbl.gov/www/radiance/radiance.html

8. References

[1] Baum, Daniel, Holly Rushmeier, James Winget, "Improving
Radiosity Solutions Through the Use of Analytically Determined
Form-Factors," Computer Graphics, Vol. 23, No. 3, July 1989,
pp. 325-334.

[2] Baum, Daniel, Stephen Mann, Kevin Smith, James Winget,
"Making Radiosity Usable: Automatic Preprocessing and Mesh-
ing Techniques for the Generation of Accurate Radiosity Solu-
tions," Computer Graphics, Vol. 25, No. 4, July 1991.

[3] Chen, Shencbang Eric, Lance Williams, "View Interpolation for
Image Synthesis," Computer Graphics, August 1993, pp. 279-
288.

[4] Compagnon, Raphael, B. Pauie, J.-L. Scartezzini, "Design of
New Daylighting Systems Using ADELINE Software," Solar
Energy in Architecture and Urban Planning, proceedings of the
3rd European Conference on Architecture, Florence, Italy, May
1993.

[5] Cook, Robert, Thomas Porter, Loren Carpenter, "Distributed
Ray Tracing," Computer Graphics, Vol. 18, No. 3, July 1984,
pp. 137-147.

[6] Dorsey, Julie O'B., Francois Sillion, Donald Greenberg, "Design
and Simulation of Opera Lighting and Projection Effects," Com-
puter Graphics, Vol. 25, No. 4, July 1991, pp. 41-50.

[7] Glassner, Andrew S., "Space subdivision for fast ray tracing"
IEEE Computer Graphics and Applications Vol. 4, No. 10,
October 1984, pp. 15-22.

[8]

[9]

[10]

[111

[12]

[13]

[14]

[151

[16]

[17]

[18]

[191

[20]

[21]

[22]

[23]

[24]

[25]

[261

[27]

[28]

[291

[301

[31]

Goral, Cindy, Kenneth Torrance, Donald Greenberg, Bennet Bat-
taile, "Modeling the Interaction of Light Between Diffuse Sur-
faces," Computer Graphics, Vol. 18, No. 3, July 1984, pp. 213-
222.
Grynberg, Anat, Validation of Radiance, LBID 1575, LBL
Technical Information Department, Lawrence Berkeley Labora-
tory, Berkeley, California, July 1989.
Kajiya, James T., "The Rendering Equation," Computer Graph-
ics, Vol. 20, No. 4, August 1986.
Kemighan, Brian, Dennis Ritchie, The C Programming
Language, Prentice-Hall, 1978.
Kirk, David, James Arvo, "Unbiased Sampling Techniques for
Image Synthesis," Computer Graphics, Vol 25, No. 4, July
1991, pp. 153-156.
Mardaljevic, John and Kevin Lomas, "Creating the Right
Image," Building Services / The CIBSE Journal, Vol 15, No. 7,
July 1993, pp. 28-30.
Mardaljevic, John, K.J. Lomas, D.G. Henderson, "Advanced
Daylighting Design for Complex Spaces" Proceedings of
CLIMA 2000, 1-3 November 1993, London UK.
Meyer, Gary, Holly Rushmeier, Michael Cohen, Donald Green-
berg, Kenneth Torrance, "An Experimental Evaluation of Com-
puter Graphics Imagery," ACM Transactions on Graphics, Vol.
5, No. 1, pp. 30-50.
Nicodemus, F.E., J.C. Richmond, J.J. Hsia, Geometrical Con-
siderations and Nomenclature for Reflectance, U.S. Department
of Commerce, National Bureau of Standards, October 1977.
Perlin, Ken, "An Image Synthesizer", Computer Graphics, Vol.
19, No. 3, July 1985, pp. 287-296.
Rushmeier, Holly, Extending the Radiosity Method to Transmit-
ting and Specularly Reflecting Surfaces, Master's Thesis, Comell
Univ., Ithaca, NY, 1986.
Rushmeier, Holly, Charles Patterson, Aravindan Veerasamy,
"Geometric Simplification for Indirect Illumination Calcula-
tions," Proceedings of Graphics Interface '93, May 1993, pp.
227-236.
Smits, Brian, James Arvo, David Salesin, "An Importance-
Driven Radiosity Algorithm," Computer Graphics, Vol 26, No.
2, July 1992, pp. 273-282.
Snyder, John M., Alan H. Ban', "Ray Tracing Complex Models
Containing Surface Tessellations," Computer Graphics Vol. 21,
No. 4, pp. 119-128, July 1987.
Teller, Seth and Pat Hanrahan, "'Global Visibility Algorithms for
Illumination Computations," Computer Graphics, pp. 239-246,
August 1993.
Tumblin, Jack, Holly Rushmeier, "Tone Reproduction for Real-
istic Images," IEEE Computer Graphics and Applications, Vol.
13, No. 6, November 1993, pp. 42-48.
Wallace, John, Michael Cohen, Donald Greenberg, '"A Two-Pass
Solution to the Rendering Equation: A Synthesis of Ray Tracing
and Radiosity Methods," Computer Graphics, Vol. 21, No. 4,
July 1987.
Ward, Gregory, Francis Rubinstein, Robert Clear, "A Ray Trac-
ing Solution for Diffuse Interreflection," Computer Graphics,
Vol. 22, No. 4, August 1988.
Ward, Gregory, "Adaptive Shadow Testing for Ray Tracing,"
Second EUROGRAPHICS Workshop on Rendering, Barcelona,
Spain, April 1991.
Ward, Gregory, "Real Pixels," Graphics Gems H, Edited by
James Arvo, Academic Press 1991, pp. 80-83.
Ward, Gregory, Paul Heckbert, "Irradiance Gradients," Third
EUROGRAPHICS Workshop on Rendering, Bristol, United
Kingdom, May 1992.
Ward, Gregory, "Measuring and Modeling Anisotropic
Reflection," Computer Graphics, Vol. 26, No. 2, July 1992, pp.
265-272.
Ward, Gregory, "A Contrast-Based Scalefactor for Luminance
Display," Graphics Gems IV, Edited by Paul Heckbert,
Academic Press, 1994.
Whined, Turner, "An Improved Illumination Model for Shaded
Display," Communications of the ACM, Vol. 23, No. 6, June
1980, pp. 343-349.

472

