
XRay: Photorealistic Rendering System

Ioannis Tsiombikas∗

City Liberal Studies

Affiliated Institute of the University of Sheffield

Panagiotis D. Bamidis†

Lab of Medical Informatics

Medical School

Aristotele University of Thessaloniki

Dimitris Dranidis‡

South East European Research Centre

Research Centre of the University of Sheffield

and CITY Liberal Studies

Abstract

This describes “X-Ray”, a “photorealistic rendering system”, or
simply a “renderer”. A program that facilitates the production of
photorealistic visualizations, and time-varying animations, of mathe-
matically defined 3D environments. This system provides an advanced
feature-set, such as monte-carlo ray-tracing, programmable shaders
and network rendering, often encountered in expensive commercial ren-
derers, while being available as free software.

Keywords: rendering, computer graphics, ray tracing, photorealism

1 Introduction

Visual perception is one of our more refined senses. “A picture is worth a
thousand words”, goes the popular proverb, which is true due to the great
efficiency of information retrieval in visual media.

1.1 Definitions

Computer graphics is the field of computer science that deals with algorithms
for the presentation of visual information through a computer. This ranges

∗e-mail: nuclear@siggraph.org
†e-mail: bamidis@med.auth.gr
‡e-mail: ddranidis@seerc.org

1



from mundane tasks such as drawing graphical user interfaces for human-
computer interaction, to visualizing immersive 3-dimensional environments
or presenting scientific data.

3D computer graphics, mostly deal with the mathematics and algorithms
of converting 3-dimensional objects and environments into raster images.
A raster image is a rectangle area of pixels, which can be presented as a
continuous signal of varying intensities to humans, through regular computer
displays.

The process of transforming a concise mathematical description of a
virtual 3D environment into a raster image, is called “rendering”, and the
software that performs this task is called a “renderer”.

The significance of the word “photorealistic” in this context refers to
the attempt to facilitate the creation of visualizations which are more or
less indistinguishable from reality. This is done, at the software level, by
providing the ability to calculate the various subtle interactions of light
with the virtual environment. And this is one of the major goals of this
system.

1.2 Geometry Representation and Rendering Algorithms

There are many ways to represent the geometry of 3D objects in a computer.
The most widely used are the following:

• Mathematical equations describing the object. For example the quadratic
equation x2 + y2 + z2 = r2, perfectly describes a sphere.

• Polyhedral boundary approximation. Using a mesh of polygons to
approximate the shape of the object’s surface, for example 8 polygons
can be connected to form a ring, thus approximating the surface of a
cylinder.

• discrete 3D scalar fields, or “voxels” can be used to define the volume
occupied by the object.

Of these, the polygon mesh representation is the most popular, due to
the ease of manipulation and rendering; transforming the polygon vertices
transforms the object itself, and projecting the polygons to a view plane is
sufficient to visualize the object. But most importantly, the fact that given
enough polygons any shape can be approximated to an arbitrary degree.

There are two basic algorithms used in 3D rendering: polygon rasteri-

zation and ray tracing [1]. The first one is almost always used in real-time
rendering, where it is important to be able to render many times per sec-
ond, because it is inherently very efficient. However, it has nothing to do
with how light interacts with the environment, making it extremely hard or
impossible to robustly produce effects such as reflection, refraction, or even

2



shadows. Thus, where quality and photorealism is more important than
speed of execution (i.e. off-line rendering), ray tracing is the way to go.

With ray tracing, the basic algorithm for every pixel of the raster im-
age, “shoots” rays backwards from the view point, into the environment
and calculates intersections of each ray with the 3D objects. Wherever an
intersection is found, the illumination contribution from each light source is
calculated, and secondary reflection or refraction rays are shot recursively
to the appropriate directions. The resulting illumination returned by that
recursive tracing is accumulated with the local illumination to produce a
color value for the pixel that spawned each primary ray.

2 X-Ray Features

The X-Ray renderer is a photorealistic off-line rendering system, providing
advanced features commonly associated with expensive commercial render-
ers. Some of the key features of this renderer are:

• Advanced, monte–carlo ray tracer, able to simulate the subtle interac-
tions of light with the virtual environment, required for photorealistic
rendering.

• Extensibility through programmable shaders, which can be written to
control the rendering process, and extend the renderer with custom
shading models or rendering algorithms.

• Flexible client–server architecture.

• Reusability; the rendering core is written in the form of a cross–
platform ISO C/C++ library, which can be linked with any application
that requires 3D visualization.

• Fully specified XML scene description format, which is easy to parse,
and easy to write converters and other supporting utilities, for maxi-
mum interoperability with 3D authoring programs, or other renderers.

• Free software; The whole system is released under the terms of the
GNU General Public License (GPL).

Arbitrary subsets of these features are in one way or another available in
other rendering systems out there. For instance, there are some free software
renderers available, like “POV-ray”[2], but they don’t support advanced fea-
tures like programmable shading, which is only available in big, commercial,
non-free renderers like “mental ray”[3] or Pixar’s “Renderman”[4]. Their in-
tersection is what makes this system ideal to be used, freely, by the scientific
community as a platform for further research into graphics algorithms and
photorealistic rendering.

3



Now in order to demonstrate why are these features important for a
renderer, let’s examine the most important of those in more detail.

2.1 Advanced Ray-Tracing

The basic ray tracing algorithm as described in the introduction is minimal
and elegant, but fails to capture by itself some important aspects of the
behaviour of light.

Figure 1: Simple Whitted ray tracing (image produced by x-ray)

In order to be able to describe the simulation of various paths of light
throughout a 3D environment, it is important to quickly review a very con-
vinient notation introduced by Heckbert, called: “light path notation.”[5]

Light path notation consists of a string of characters from the set {L, S, D, E},
which stands for light, specular interaction, diffuse interaction, and eye re-
spectively. By using combinations of these letters in a sequence we can
describe all possible interactions of light in an environment. For example a
diffuse sphere seen through the specular reflection of a mirror, corresponds
to a LDSE path, while a caustic formed on a table by light concentrated by
a lens, corresponds to an LSDE path.

Heckbert also used regular expressions to describe classes of possible
light paths, for example returning to our original discussion, a basic ray
tracer can simulate zero or one diffuse reflections, followed by zero or more

4



specular interactions before arriving at the eye; such a class of paths can be
denoted by the expression LD?S*E, while all possible light paths in a scene
are really described by L(D|S)*E.

So, it becomes apparent that in order to properly simulate the inter-
actions of light with an environment, one must go beyond the simple ray
tracing algorithm.

2.1.1 Monte–Carlo Integration in Ray Tracing

In order to achieve its stated goal of photorealism, X-Ray uses monte carlo
methods enhancments to the basic ray tracing algorithm, also called “dis-
tribution ray-tracing.”[6] This enhancment makes it possible to simulate
such effects as soft shadows produced by area lights, glossy reflections from
rought surfaces, and spatial antialiasing1.

Figure 2: Distributed or monte carlo ray tracing used for glossy reflection
and soft shadows (image produced by x-ray)

Distribution ray-tracing works by numerically integrating various prop-
erties over their proper ranges, instead of just using a single sample. To

1temporal antialiasing is also possible with monte carlo ray tracing, but not currently

implemented by the system

5



make this clear, consider the basic raytracing process of calculating reflec-
tions. A single ray is considered, whose direction is the reflected vector
of the incoming ray. This produces only perfect-mirror reflections. Now if
we are to instead sample a range of directions around the perfect reflection
direction, as a function of surface roughness, essentially integrating over a
solid angle of directions. We can obtain a more realistic “glossy” reflection.

2.1.2 Photon Mapping

Furthermore, X-Ray uses a cutting-edge technique called “photon mapping”[7]
for capturing an otherwise very hard to simulate behaviour of light, caustics.
Caustics are formed by light concentrated in a small area due to reflection
or refraction from a highly specular object. A familiar example of caustics
is the bright spot of light concentrated by passing through a lens, or a glass
filled with liquid.

Figure 3: Caustics formed by concentrated light passing through a glass
sphere (image produced by x-ray)

Photon mapping works by first tracing the paths of a big number of
light particles (photons) througout the scene, and storing them at the end
of their path as a 3D point cloud. It is extremely important to choose a
data structure that provides very fast location of nearest-neighbor photons.
In X-Ray we use a kd-tree[8] for that purpose, as proposed by Jensen[7].

Thus, through the use of advanced rendering techniques, X-Ray manages
to compute almost all light paths in a virtual environment. More concisely,
in light path notation, it can simulate all LS*D?S*E paths. The only thing it

6



can’t handle properly right now is multiple diffuse reflections, which is been
worked on currently (see future work section).

Figure 4: More complicated caustics produced by a glass sphereflake fractal
(image produced by x-ray)

2.2 Extensibility – Programmable Shading

Another very important feature of X-Ray is the extensibility through pro-
grammable shading. It means that the user may provide a small program
associated with any object of the environment, to be used for calculating
illumination and driving the ray tracing process, after an intersection is
encountered with that object.

This gives the power to the user to achieve very complex custom shading
effects, implement novel reflectance models, or change the way rays are
traced through the scene.

X-Ray achieves a unique combination of ease of use and shader execution
performance by the use of on-demand shader compilation from C++ source
files (see implementation section for more details).

Of course a number of built-in shaders are available for use with X-
Ray, implementing the most commonly used reflectance models: Phong[9],
Cook-Torrance[10], and Oren-Nayar[11].

7



3 X-Ray Design & Implementation

Figure 5 illustrates the high-level architecture of the renderer.

client 1

xrayd
(rendering daemon)

libxray

...client 2 client n

(TCP/IP connections)

Shader program 2

Shader program 1

...

Shader program n

Figure 5: high level rendering system design

3.1 Libxray – The Core Library

The core of the renderer is implemented in the form of an easy to use reusable
library, called “libxray” which may be linked with any program requiring
high quality rendering and visualization. This aspect alone makes the system
extremely flexible.

The library, provides all the necessary algorithms needed to perform
photorealistic rendering, and it is really a manner of calling a few high-
level functions for any program to be able to visualize a high quality 3D
environment. Essentially, a program using libxray, needs only to instruct
the library to read rendering options from a configuration file, call a function
to read the scene definition, another function to perform the rendering, and
two final calls to get the resulting pixels, and save them in an image file.

Even a more complicated program that would be able to utilize the
full advanced data output capabilities of libxray to perform compositing,
relighting, exposure control and other advanced processes, will only need a
couple more calls to the library itself, and of course a lot of code to interface
with the window system for presentation and user interaction, tasks which
are out of the scope of our code.

The scene description understood by libxray is based on XML (a DTD
is available provided for validation). XML was chosen in order to make
it very easy to interoperate with other programs, such as 3D authoring
tools, or renderer front-ends. Converters have been written for 3D Studio,
Maya, PLY, and Collada data formats. And export plugins for various 3D

8



authoring tools can easily be written. Also, a realtime OpenGL preview
program that reads the same scene descriptions is available.

Finally, the libxray, provides a C++ API to write user-defined shader
programs, that drive the whole rendering process as described in the previous
section.

The shader source files must contain an entry function “shade”, which
is called by the libxray core whenever during ray tracing, an intersection
is encountered with an object whose material contains a reference to that
shader.

The advantage of using compiled C++ shader programs as opposed to
using an interpreted language for that purpose, is of course that the execu-
tion of the shaders is very fast (something extremely important as they will
be called thousands of times for each rendered frame).

The disadvantage of using compiled shaders would be the difficulty of
having to go through compilation and linking for every shader, plus the
issue of the inherent non-portability of the compiled object code. X-Ray
solves both these problems with on-demand shader compilation server-side.
Whenever a shader is needed, the source file is retrieved, compiled, linked
and cached automatically by the renderer. Thus lifting all unnecessary effort
from the user, who only provides the portable source file to the renderer.

3.2 The xrayd Rendering Daemon

The actual rendering program, which uses libxray, is implemented in the
form of a networked rendering daemon.

This choice is significant as it allows extremely simple rendering front-end
programs to be written, tailored to the needs of a specific user / class of users,
or organization. But most importantly, because it allows the actual work
(which is very processor-intensive) to be performed on powerful dedicated
rendering servers, accessible by the users who may be working on inexpensive
workstations.

The communication between client and server is performed through
TCP/IP with a custom mostly text-oriented protocol.

4 Future Work

X-Ray is always under development, and efforts are made to improve it in
many ways.

The most important aspect where the original work was lacking, is run-
time efficiency. Currently multiple ideas are been worked on for optimizing
the rendering process such as:

• The use of various space partitioning schemes to accelerate intersection
tests.

9



• Adaptive supersampling, or even adaptive subsampling for fust pre-
view renderings, to avoid shooting an excessive amount of rays where
it wouldn’t make much difference due to low frequency detail.

• Fast hardware rasterization pass using OpenGL, to identify primary
ray hits.

Appart from performance optimizations, work is being done to improve
the photorealistic rendering capabilities of X-Ray. The major goal is to
simulate all possible light paths through the environment efficiently. Photon
mapping can be used to achieve this, in conjunction with “path tracing”[12],
which is the approach currently been worked on. Another method to achieve
this result is the use of “radiosity”[13].

5 Conclusion

To conclude, X-Ray is a multiplatform, advanced photorealistic renderer,
providing a wide range of features comparable to big commercial render-
ers, while being licensed under free software terms (GNU General Public
License), in order to be of maximum use to the scientific community. It
is extremely flexible and can be used as a platform to support further re-
search in the field of computer graphics, as well as the means to produce
high quality animations and special effects.

Figure 6: Part of the core rendering code, running on the Nintendo GameBoy
Advance, demonstrating its high degree of portability.

10



References

[1] W. Turner, “An improved illumination model for shaded display,”
CACM, 1980, vol. 23, no. 6, pp. 343–349, 1980.

[2] “Pov-ray web site.” [Online document], [cited 2005 Dec 14], Available
HTTP: http://www.povray.org.

[3] “Mental ray web site.” [Online document], [cited 2005 Dec 14], Avail-
able HTTP: http://www.mentalimages.com.

[4] T. Apodaca, “The RenderMan interface,” j-BYTE, vol. 14, pp. 167–
176, Apr. 1989.

[5] P. S. Heckbert, “Adaptive radiosity textures for bidirectional ray trac-
ing,” in Proceedings of SIGGRAPH 1990, vol. 24, pp. 145–154, Aug.
1990.

[6] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
Proceedings of SIGGRAPH 1984, pp. 137–145, July 1984.

[7] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping. A. K.
Peters, 2001.

[8] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” CACM, 1975, vol. 18, no. 9, pp. 509–517, 1975.

[9] B. T. Phong, Illumination for computer-generated images. PhD thesis,
Dept. of Electrical Engineering, University of Utah, 1973.

[10] R. L. Cook and K. E. Torrance, “A reflectance model for computer
graphics,” in Proceedings of SIGGRAPH 1981, Computer Graphics
Proceedings, Annual Conference Series, ACM, ACM Press / ACM SIG-
GRAPH, 1981.

[11] M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance
model,” in Proceedings of SIGGRAPH 1994, Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, ACM Press / ACM SIG-
GRAPH, 1994.

[12] J. T. Kajiya, “The rendering equation,” in Proceedings of SIGGRAPH

1986, pp. 143–150, ACM Press / ACM SIGGRAPH, 1986.

[13] R. Siegel and J. R. Howel, Thermal Radiation Heat Transfer. Hemi-
sphere Publishing Corp., 1981.

11


