
3dengfx: The Design and Implementation of 3D
Engines

Ioannis Tsiombikas

December 21, 2007
Unipi free software community

Ioannis Tsiombikas 3dengines Design & Implementation



Outline

1 Introduction
3D Graphics 101
3D Engines

2 3dengfx

3 Beyond 3dengfx
Theseis
gfxtools

Ioannis Tsiombikas 3dengines Design & Implementation



3D Computer Graphics

In a nutshell: algorithms that transform a mathematical
representation of a 3D environment, into a displayable image.

Ioannis Tsiombikas 3dengines Design & Implementation



Typical Uses of 3D Graphics

Entertainment

3D animated movies (Toy Story, Ice Age, etc.)
Cinema special effects (Terminator, Star Wars, LoTR).
Computer games (well. . . all of them).

Scientific Visualization (geological visualizations. fluid
simulations, etc.)

Medical Visualization (MRI, CT)

Lately also user interfaces (beryl).

Ioannis Tsiombikas 3dengines Design & Implementation



Graphics Algorithms Classification

The big tradeoff:

Realtime rendering

Trades rendering quality for runtime efficiency.

Usually based on polygon filling which is:

Fast!
Hackish.
Lots of hardware implementations.

Off-line rendering

Trades runtime efficiency for rendering quality.

Usually based on ray tracing which is:

Beautiful.
Elegant!
Intuitive. . .
Slow as hell (esp. with the addition of monte-carlo methods).

Ioannis Tsiombikas 3dengines Design & Implementation



Graphics Algorithms Classification

The big tradeoff:

Realtime rendering

Trades rendering quality for runtime efficiency.

Usually based on polygon filling which is:

Fast!
Hackish.
Lots of hardware implementations.

Off-line rendering

Trades runtime efficiency for rendering quality.

Usually based on ray tracing which is:

Beautiful.
Elegant!
Intuitive. . .
Slow as hell (esp. with the addition of monte-carlo methods).

Ioannis Tsiombikas 3dengines Design & Implementation



Graphics Algorithms Classification

The big tradeoff:

Realtime rendering

Trades rendering quality for runtime efficiency.

Usually based on polygon filling which is:

Fast!
Hackish.
Lots of hardware implementations.

Off-line rendering

Trades runtime efficiency for rendering quality.

Usually based on ray tracing which is:

Beautiful.
Elegant!
Intuitive. . .
Slow as hell (esp. with the addition of monte-carlo methods).

Ioannis Tsiombikas 3dengines Design & Implementation



Surface Representation

A 3D object is represented by a mesh of polygons, approximating
the surface of the object.

A rubber duck

Ioannis Tsiombikas 3dengines Design & Implementation



Coordinate Systems

During rendering, the vertices of each polygon are transformed
through a number of coordinate systems.

Ioannis Tsiombikas 3dengines Design & Implementation



What is a 3D Engine?

A bunch of code, that handles various common 3D graphics tasks.
Usually a 3D engine handles most of the following:

System abstraction.

Low level drawing code / 3D graphics API handling.

Scene database.

Rendering algorithms.

Special effects.

Data import (models, textures, shaders, etc.)

Ioannis Tsiombikas 3dengines Design & Implementation



About 3dengfx

3dengfx, is a 3D engine I started writing in mid-2003, mainly to be
used in making “demos”, and various graphics experiments.
During 2004, Michael Georgoulopoulos joined the project. Which
continued until roughly the end of 2006.
Available (under the GPL) at: http://engfx3d.berlios.de.

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules

The source directory structure, provides a quick overview of
3dengfx.

3dengfx (core).

fxwt.

gfx.

n3dmath2.

dsys.

common.

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules - 3dengfx

Includes anything that is specific to the 3D engine and can’t be
used separately.

OpenGL low-level state manipulation and drawing.

Virtual cameras, lights, shadows, and surface materials.

Geometry generation, and loading (full scene loading from 3ds
files).

Texture and shader management.

Abstraction of renderable “objects”, with their state and
rendering attributes.

3D scene management and automated full scene rendering.

Particle systems.

Volume rendering (marching cubes).

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules - fxwt

Handles window system interaction and event handling, in a
cross-platform manner.

Creates OpenGL windows.

Handles events (provides callback mechanism).

Handles fonts / text rendering.

Compile-time selectable back-ends: Native(X11/GLX,
Win32/WGL), SDL, GLUT, GTK+.

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules - gfx

Anything graphics related, that isn’t necessarily tied to 3dengfx or
OpenGL.

3D geometry data structures (vertices, meshes, etc.)

Animation (keyframe tracks, interpolation, hierarchy,
controllers).

Color related routines.

Image loading / saving & image processing.

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules - n3dmath2

This used to be a standalone library (and has become so again
recently). Provides the fundamental (for computer graphics)
mathematical primitives, and their operations.

Vectors, cartesian and spherical.

Matrices.

Quaternions.

Rays, quadratics and their intersections (not used for
3dengfx).

Interpolation (linear, spline, bezier), numerical integration,
gaussians, etc.

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules - dsys

The “demosystem” part of 3dengfx.
A demo is broken into a sequence of “parts”. Each part is added
to the demosystem database.
A simple script interpreter handles the part sequencing.

Demoscript example

0 fx fade 0 2s <0,0,0,1> 0 <0,0,0,0> 0
0 fx overlay 1s 3s t0 sdr/radial_p.glsl

0 start_part partname
1000 set_rtarget partname t0
4000 set_rtarget partname fb
4000 stop_part partname
end

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx modules - common

Common code, used by all other 3dengfx modules.

Platform independent high-resolution timer.

Configuration file parser.

Byteorder determination, and I/O.

Uniform error logging.

Hash table, heapsort, fps counter, data file locator, etc.

Ioannis Tsiombikas 3dengines Design & Implementation



3dengfx usage example

void display(void);
Scene *scene;

int main(void)
{

create_graphics_context(800, 600, false);
set_display_handler(display);
scene = load_scene("foo.3ds");
return main_loop();

}

void display(void)
{

scene->render();
flip();

}

Ioannis Tsiombikas 3dengines Design & Implementation



What went right with 3dengfx

Enabled very easy experimentations, quick&dirty prototypes,
etc.

Would have worked nicely for artist-heavy demos (or games).
Got the last drops of juice out of 3ds files (animation,
reflections, materials, hierarchies, etc).

Great particle system.

Ran perfectly on multiple operating systems (GNU/Linux,
FreeBSD, IRIX, Windows), processor architectures (x86
32bit/64bit, MIPS 32bit/64bit).

Ioannis Tsiombikas 3dengines Design & Implementation



What went wrong with 3dengfx

Over-engineering. E.g. partial template specialization, just for
providing a convenient “triangle array to index array”
constructor.

Too many abstractions and automation layers interacting in
unforseen ways. Too many layers to peel in order to do
something “less common”.

Eventually became too cumbersome to use for simple
experiments, that wouldn’t use all these abstractions anyway.

Ioannis Tsiombikas 3dengines Design & Implementation



Theseis Engine

The theseis engine was designed and implemented, mostly by
myself, Michael Georgoulopoulos, and Giorgos Markou.

Ioannis Tsiombikas 3dengines Design & Implementation



Theseis Engine Design

Designed and implemented as a collection of separately built (but
interdependent) libraries.

Some good parts from 3dengfx ripped and placed in the theseis
engine: mathematical library, image loading/saving, and some
other small pieces of code.

Cross-platform and cross-API

Modular, broken up into many specialized libraries.

Heavily content-driven.

Everything done exclusively with shaders.

Implementing various cutting-edge rendering algorithms
(deferred shading, realtime ambient occlusion, etc).

Ioannis Tsiombikas 3dengines Design & Implementation



Theseis Engine Libraries

libgc

libgcx

libsys

math3d

libcollision

libppe

libbadcfg

libvfs

libvis

libimage

libutk

libchunk

libcommon

Ioannis Tsiombikas 3dengines Design & Implementation



Graphics Programmer’s Toolbox (gfxtools)

New free software project! http://gfxtools.sourceforge.net

A set of many, small, independent, extremely specialized
libraries; covering everything generally needed by 3D graphics
applications.

Can be used separately as needed, or combined together, to
provide most of the traditional notion of a 3D engine.

Written in C, and keeping the API as simple as possible.

Ioannis Tsiombikas 3dengines Design & Implementation



Benefits of the gfxtools Approach

Most applications would use a very small part of 3dengfx. The
rest was baggage, which this scheme eliminates.

Very low learning overhead. People can easily pick up and use
a small library, compared to a 30kloc catchall library like
3dengfx.

Very low integration overhead. Each small piece can be easily
integrated in a bigger program, to cover a specific need.

C is supported correctly on virtually every platform. It’s easier
to dlopen/dlsym. And less prone to “provoke”
overengineering tendencies.

Ioannis Tsiombikas 3dengines Design & Implementation



Questions?

Thank you for listening!
Questions?

Ioannis Tsiombikas 3dengines Design & Implementation


	Introduction
	3D Graphics 101
	3D Engines

	3dengfx
	Beyond 3dengfx
	Theseis
	gfxtools


