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Figure 1. 4 screenshot from StarCraft 11

5.0 Abstract

In this chapter we present the techniques and algorithms used for compelling
storytelling in the context of the StarCraft 1° real-time strategy game. We will go over
some of the design goals for the technology used to empower our artists for both in-
game and “story mode” settings as well as describe how the Blizzard art style influenced
the design of the engine. Various aspects of our lighting pipeline will be unveiled, with a
strong focus on several techniques making use of deferred buffers for depth, normals,
and coloring components. We will show how these deferred buffers were used to
implement a variety of effects such as deferred lighting, screen-space ambient occlusion
and depth of field effects. Approaches with respect to shadows will also be discussed.

5.1 Introduction

Starcraft Il presented unique challenges for development as a second installment in a
well-known franchise with the first entry dating from ten years before. During the
process of development we had to overcome these and we will share the engineering
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choices that were made in the context of the Starcraft Il graphics engine, and in
particular how these choices were made to support the unique Blizzard art style.

5.2 Engine Design Goals

Early on during development, we had several themes in mind that we wanted to drive
the development of our graphics engine with:

Scalability First

A major design goal is the scalability of the engine. Blizzard games are well known for
their ability to support a range of consumer hardware, including fairly outdated
specifications, while always providing a great player experience. This was typically
achieved in our previous games by keeping the playing field pretty even between all
players, with a minimal set of video options. For Starcraft Il, we wanted to maximize
compatibility with less capable systems to ensure hassle-free game play for as broad a
player base as possible. Yet we also wanted to utilize the full potential of any available
hardware to ensure the game’s looks were competitive. This meant supporting a wide
range of hardware, from ATI Radeon™ 9800/NVIDIA GeForce™ FX’s to the ATI
Radeon™ HD 4800s and NVIDIA GeForce™ G200s, targeting maximum utilization on
each different GPU platform.

This scalability translated in a fairly elaborate shader framework system. A full
discussion of our shader system could very well encompass a whole chapter by itself so
we will not focus on it here, so this is only a short overview.

We only had one or two artists that would actually have any interest in writing their
own shaders so early on, instead of focusing on writing elaborate shader prototyping
tools for artists we decided to focus our efforts on making the shader framework as
flexible and easy to use for programmers as possible, which is somewhat counter to the
industry trend at this time.

Thus, writing shader code in our game is generally very close to adding a regular C++ file
in our project. Figuratively, we treat the shader code as an external library called from
C++, with the shader code being a free form body of code organized structurally as a C++
codebase would. Thus, the concept of shaders can be a loose one in Starcraft Il — the
shader code library defines several entry points that translate to different shaders, but
one entry point is free to call into any section of shader code. Thus it would be difficult
to talk about how many “individual” shaders Starcraft Il uses, as it is a single body of
code from which more than a thousand shader permutations will generally be derived
for a single video options configuration. Making our shader framework system as
familiar as possible for programmers has enabled us faster turnaround time when
debugging shaders. In our case, when our technical artists have some ideas for new
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shaders they will generally prototype it using 3D Studio MAX renders and a programmer
will implement an optimized version of the effect, often times adding reusable
abstractions to the shader that may not have been apparent to an artist. In all, Starcraft
Il uses about 8,000 unique, non-repeating lines of shader code, divided amongst 70 files.
Interestingly enough, we’ve come to the point where the body of shader code alone has
grown larger than the entire codebase for games from the early stages of the games
industry.

Stress GPU over CPU

We chose early on to stress the GPU more than the CPU when ramping up quality levels
within the game. One of the main reasons for this is that, in Starcraft Il, you are able to
spawn and manage potentially hundreds of the smaller base units such as zerglings and
marines. In large-scale multiplayer games with eight players, this can translate to up to
roughly five hundred units on the screen at a single time, at peak. Because the number
of units built is largely under the control of the player (as well as due to the choice of
the selected race), balancing the engine load such that CPU potential is well utilized in
both high-unit count and low-unit unit count situations becomes cumbersome.

Figure 2. Players can control a very high number of units, thus balancing batch counts
and vertex throughputs is key to reliable performance.
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In contrast, GPU loads in our case tend to be much more affected by the pixel shader
load, which tends to stay constant for a real-time strategy game because of the
generally low overdraw. Although vertex counts for a particular scene can ramp up well
above a million in a busy battle scene, this type of vertex throughput is well handled by
most modern GPU hardware. This has driven us to push the engine and art styles
towards ever increasing pixel-shader level effects whenever possible, minimizing batch
counts and using relatively conservative vertex counts.

The Starcraft Il units are generally viewed from a good distance away and therefore
result in a small screen-space footprint during game play. Therefore, increasing the
model vertex counts would have given us marginal benefits during actual game play in
most cases. For that reason we avoided generating art assets with large polygon counts.

Dual Nature of the Engine

Starcraft Il is supported by an engine that in many ways has a split personality; during
normal game play we typically render scenes from a relatively far away distance, with
high batch counts, and a focus on action rather than details. At the same time, we really
wanted to push our storytelling forward with Starcraft I, and this is where the game’s
“Story Mode” comes in. In this mode, the player generally sits back to take in the game’s
rich story, lore and visuals, interacting with other characters through dialogues and
watching actions unfold. This is the mode where most of Starcraft II's storytelling
happens and it has radically different and often opposing constraints to the in-game
mode; story mode generally boasts lower batch counts, close-up shots, and a somewhat
more contemplative feel — all things more typical of a first person shooter.
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Figure 3. In-game view vs. “story mode” in Starcraft I1.
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We will explore how these different design goals affected our algorithmic choices. We
will showcase some of our in-game cinematics and peel off some of the layers of
technology behind it, as well as shows examples of the technology in actual gameplay.

5.3 Screen-Based Effects

One of the objectives for Starcraft Il was to present rich lighting environments in story
mode, as well as more lighting interactions within the game itself. Previously in Warcraft
111, each unit had a hard limit as to the number of lights that could affect it at any given
time. This would cause light popping as units moved from one of light influences to
another. For that reason, the use of dynamic lighting was fairly minimal. At the same
time, using forward rendering approaches, we were quickly presented with the problem
of the large increase in the number of draw call batches. One of the stress cases we
used was a group of marines, with each marine casting a flickering light that in turn
shades the surrounding marines around him. The batch counts in such cases rapidly
became unmanageable, and issues were also present with our deeply multi-layered
terrain rendering, thus requiring complex terrain slicing and compounding the problem.

The goal to reduce batch counts was the first step that sent us on the road towards
using deferred buffers for further treatment at the end of the frame. “Deferred
rendering” term (as covered in [CALvERO4], [SHisHKovTsov05] and in [KooneQ7]) often
refers to the storage of normals, depth and colors to apply lighting at a later, “deferred”
stage. In our case we use it in the broader sense to mean any graphical technique which
uses this type of deferral, even in cases where a non-deferred approach would have
been viable as well. We’ll explore issues and commonalities with all things deferred.

In practice, we’ve found many pros and cons for using deferred computations with the
storage of relevant information, such as depth values, normals, etc. Although storage of
this information consumes memory and bandwidth, as well as the extra cost of re-
sampling the buffers at the processing stage, it generally helps greatly with scalability by
ensuring the cost curve of effects tend to stay linear instead of exponential. When using
deferred buffers, adding more layers of effects generally results in a linear, fixed cost
per frame for additional full-screen post-processing passes regardless of the number of
models on screen, whereas the same effect with forward rendering exhibits an
exponential cost behavior. This leads us unto our goal of maximizing resource usage
regardless of whether there five or five hundred units on the screen.

Keeping batch counts low is paramount for any RTS game. We were thus naturally
drawn away from trying to fill up the deferred buffers in a separate pass and instead
relied on multiple render targets (MRTSs) to fill the deferred buffers during the main
rendering. Thus, in the main rendering pass, several MRTs will be bound and filled with
their respective information. Much of the mainstream hardware is limited to four

139 | Page



Chapter 5: StarCraft . Effects and Techniques

render targets bound at once, so right now it makes sense to pick deferred component
that will fit within the sixteen individual channels this provides for.

For Starcraft I, any opaque model rendered will store the following to multiple render
targets bound in its main render pass:
e Color components not affected by local lighting, such as emissive, environment
maps and forward-lit color components;
e Depth;
e Per-pixel normal;
e Ambient occlusion term, if using static ambient occlusion. Baked ambient
occlusion textures are ignored if screen-space ambient occlusion is enabled;
e Unlit diffuse material color;
e Unlit specular material color.
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Figure 4. MRT setup.

As a quick reminder, simultaneously bound render targets under DirectX® 9 need to be
of the same width and height, and in most cases, the same bit depth. Some, but not all,
hardware supports independent color write control on each MRT which should be used
whenever possible to minimize wasted bandwidth for unused components. For
example, the alpha component is not used on all of these buffers.

We are making heavy use of HDR ([RWPDOS5])in Starcraft I, and thus all these buffers

will normally be four-channel 16-bit floating point formats. Using higher precision
format helps to sidestep accuracy issues and minimizes pixel shader instructions for
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decoding the buffers. The restriction that all buffers should be of the same bit depth
unfortunately forces the use of much wider buffers than we actually need for a many of
these buffers, pushing the output bandwidth to 24 bytes per pixel. We've found
however that even with this very heavy bandwidth cost the freedom this allows us in
the placement of our lighting was well worth the expense.

In the majority of cases, all objects outputting to these buffers are opaque, with some
notable exceptions; we will come back to the problem of handling rendering
transparent objects later.

Our terrain is multi-layered, in which case the normals, diffuse and specular colors are
blended in these buffers, while leaving the depth channel intact — only the bottom
terrain layer writes to the depth buffer.

Rendering to the MRTs provides us with per-pixel values that can be used for a variety
of effects. In general, we use:

e Depth values for lighting, fog volumes, dynamic ambient occlusion, and smart
displacement, depth of field, projections, edge detection and thickness
measurement.

e Normals for dynamic ambient occlusion

e Diffuse and specular for lighting

5.4 Deferred Lighting

Deferred lighting in Starcraft Il is used for local lights only: point and spot lights with a
defined extent in space. Global directional lights are forward rendered normally;
because these lights have no extents and cover all models, there is little benefit in using
deferred rendering methods on them, and it would actually be slower to resample the
deferred buffers again for the entire screen.

The computation results for deferred rendering vs. forward rendering equations are
equivalent, yet the deferred form is more efficient for complex lighting due to the
tighter light coverage offered by rendering the light shapes as a post-process. For the
most part, the new equation simply moves terms from one stage of the rendering
pipeline to a later stage, with the notable exception of the pixel’s view space position,
which is more efficiently reconstructed from the depth information.

Pixel Position Reconstruction

Pixel shader 3.0 offers the VPOS semantic which provides the pixel shader with the x
and y coordinates of the pixel being rendered on the screen. These coordinates can be
normalized to the [-1..1] range based on screen width and height to provide a
normalized eye-to-pixel vector. Multiplying by the depth will provide us with the pixel’s

141 |Page



Chapter 5: StarCraft . Effects and Techniques

view space position. For pixel shader 2.0, a slightly slower version is used where the
vertex shader feeds to the pixel shader a homogeneous equivalent to VPOS, from which
the w component must be divided in the pixel shader.

float3 vViewPos.xy = INTERPOLANT VPOS * half2( 2.0f, -2.0f ) + half2( -1.0f, 1.0f ) ) *
0.5 * p vCameraNearSize * p vRecipRenderTargetSize;

vViewPos.zw
vViewPos.xyz

half2( 1.0f, 1.0f );
vViewPos.xyz * fSampledDepth;

float3 vWorldPos = mul( p_mInvViewTransform, vViewPos ) .xyz;

Listing 1. Pixel position reconstruction

Stenciling, Early-Z and Early-Stencil

In our case, usage of early stencil out provided substantial speed improvements for our
scenes. Stenciling allows us to discard pixels that are covered by the light shapes but
whose depth is too far behind the light to be affected by it.

By the same token, pixels that are in front of the light’s influence will automatically
benefit from early-z out as the light shape pixels will be discarded early on.

Early-Z will reduce cost Early stencil reduces cost
of hidden lights. of objects behind light that
are not lit by it

Figure 5. Deferred rendering interaction with z-buffer and stencil buffer.
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To benefit from early stencil, the light shapes must be rendered again with color writes
off before its normal lighting pass. The stencil operation is slightly different depending
on whether the viewing camera sits inside the light shape — this has to be tested on the
CPU.

If the camera is outside the light shape, effectively we want to only pass through pixels
where only one side of the light shape is visible (which will always be the front facing
parts); this implies the pixel of the surface being lit is hiding the back facing part of the
light shape, aka the surface pixel is inside the light shape. This can be achieved by
clearing the stencil and passing any pixels that show a front face but no back face for the
light shape.

If the camera is inside the light shape, then only the back side of the light shape is
visible. In this case we want to color any of the light shape’s back facing pixels that failed
the z-test, which implies there is a lit surface inside the light shape.

Deferred Lighting in Action
The low batch counts of the deferred system allowed us to truly refine the lighting in
our cinematic scenes. Here we see a shot of one of our scenes, which consists of roughly

x (fifty) dynamic lights in the same room, from small Christmas lights to larger lighting
coming from the TV screen.
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Figure 6. Deferred lighting allows us to use complex lighting environments.
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5.5 Screen-Space Ambient Occlusion

SSAO Basics

Although our initial interest in screen space ambient occlusion was sparked by the
excellent results that we observed in such games as Crysis©, we arrived at our solution
independently. In a nutshell, the main idea behind screen space ambient occlusion is to
approximate the occlusion function at points on visible surfaces by sampling the depth
of neighboring pixels in screen space. The resulting solution will be missing occlusion
cues from objects that are currently hidden on the screen, but since ambient occlusion
tends to be a low frequency phenomenon, the approximation is generally quite
convincing.

Figure 7. Scene with lighting information only; softer shading cues are accomplished
through SSAO.

SSAO requires depth to be stored in a prior step; for Starcraft Il this is the same depth
buffer that we use for deferred lighting. The ambient occlusion term that will be
produced by the SSAO is stored in the alpha channel of our diffuse deferred render
buffer, which is then used to modulate lighting from certain global and local lights.
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At any visible point on a surface on the screen, multiple samples (8 to 32) are taken
from neighboring points in the scene. These samples are offset in 3D space from the
current point being computed; they are then projected back to screen space to sample
the depth at the sample location.

Figure 8. Overview of SSAO sampling process.

The objective is to check if the depth sampled at the point is closer or further away than
the depth of the sample point itself. If the depth sampled is closer, than there is a
surface that is covering the sample point. In general this means there is another surface
nearby that is covering the area in the vicinity around the current pixel, and some
amount of occlusion should be occurring. It is the average of these samples that will
determine the total occlusion value for the pixel.

The depth test of the sample point with its sampled depth is not simply a Boolean
operation. If the occluding surface is very close to the pixel being occluded, it will
occlude a lot more than it is further away; and in fact beyond a certain threshold there
needs to be no occlusion at all as we don’t want surface far away from the surface to
occlude it. Thus we need some type occlusion function to map the relationship between
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the depth delta between the sample point and its sampled depth, and how much
occlusion occurs.

If the aim is to be physically correct, then the occlusion function should be quadratic. In
our case we were more concerned about being able to let our artists adjust the
occlusion function, and thus the occlusion function can be arbitrary. The occlusion
functions can be any function that adheres to these criteria:
e Negative depth deltas should give zero occlusion (the occluding surface is behind
the sample point);
e Smaller depth deltas should give higher occlusion values;
e The occlusion value needs to fall to zero again beyond a certain depth delta
value.

For our implementation we simply chose a linearly stepped function that is entirely
controlled by the artist. There is a full occlusion threshold where every positive depth
delta smaller than this value gets complete occlusion of one, and a no occlusion
threshold beyond which no occlusion occurs. Depth deltas between two extremes fall
off linearly from one to zero, and the value is exponentially raised to a specified
occlusion power value. If a more complex occlusion function is required, it can be pre-
computed in a small 1D texture to be looked up on demand.

Behind In Front
-

Power curve

Small epsilon with no occlusion

D=0
Figure 9. Occlusion function.

To recap, the SSAO generation process is:
e Compute the view space position of a pixel;
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e Add (8 to 32) offset vectors to this position;

e Remap these offset vectors to where they are in screen space;

e Compare the depth of each offset vector with the depth at the point where the
offset is;

e Each offset contributes occlusion if the sampled depth on screen is behind the
depth of the offset vector. Occlusion factor is based on the difference between
the sampled depth and the depth of the offset vector.

All in the Details: SSAO Artifacts

The basics of SSAO are fairly straightforward but there several alterations that need to
be made for it to produce acceptable results.

Sampling Randomization

To smooth out the results of the SSAO lookups, the offset vectors must be randomized
thoroughly. One good approach, as given in (6) is to generate a 2D texture of random
normal vectors and lookup this texture in screen space, thus retrieving a unique random
vector per pixel on the screen. More than one random vector must be generated per
pixel however: these are generated by passing a set of offset vectors in the pixel shader
constant registers and reflecting these vectors through the sampled random vector,
thus generating a semi-random set of vectors at each pixel. The set of vectors passed in
as registers is not normalized — having varying lengths helps to smooth out the noise
pattern. In our case we randomize the length of the offset vectors from 0.5 to 1,
avoiding samples clustered too close to the source point. The lengths of these vectors
are scaled by an artist-controlled parameter that determines the size of the sampling
area.

\ s Vs -1 \ -~ -~ ~ —
AN A NNE i
— / / ~~
/1l LN / ~
N ~1 v Ny ~ W -—
AN /N A AN 1
N PR A~ “~
AN A AT A ~
- AY
N , ~ |\ ~
Random 3D vectors texture Uniformally distributed 3D random vectors
in constant registers
\ P

Reflect

l

8 to 32 unique, well-distributed
random vectors for each screen pixel

Figure 10. Randomized sampling process.

For each screen pixel
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Figure 11. SSAO term after random sampling applied. Applying blur passes will further
reduce the noise to achieve the final look.

Blurs

The previous step helps to break up the noise pattern, producing finer grained pattern
that is less objectionable. With wider sampling areas however, more processing such as
blurs become necessary. The ambient occlusion results are low-frequency, and we’ve
found losing some of the high-frequency detail due to blurring was not an issue.

The ambient occlusion must not bleed through edges to objects that are physically
separate within the scene, and thus a form of smart Gaussian blur is used. This blur
samples the nearby pixels as a regular Gaussian blur shader would, yet the normal and
depth for each of the Gaussian samples is sampled as well (encoding the normal and
depth in the same render targets presents significant advantages here). If either the
depth from Gaussian sample differs from the center tap by more than a certain
threshold, or the dot product of the Gaussian sample and the center tap normal is less
than a certain threshold value, then the Gaussian weight is reduced to zero. The sum of
the Gaussian samples is then renormalized to account for the missing samples.
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Several blur passes can thus be applied to the ambient occlusion output to completely
eliminate the grain pattern.

Self-occlusion

The output from this produces convincing results, but has the issue that in general no
area is ever fully unconcluded due to the fact that the random offset vectors from each
point will penetrate through the surface of the object itself, and the object becomes
self-occluding at all times.

One possible solution around this is to generate the offset vectors around a hemisphere
centered around the normal at that point on the screen (which implies a deferred
normal buffer has to be generated, another strong point for reusing output from
deferred rendering). Transforming each offset vector by a matrix can be expensive
however, and one compromise we’ve used is to instead perform a dot product between
the offset vector and the normal vector at that point, and to flip the offset vector is the
dot product is negative. This is a cheaper way to solve the problem at the expensive of
possibly making the noise pattern more predictable.

«— Normal

Offset vectors below surface
normal are flipped

Figure 12. Handling self-occlusion.
Edge Cases

The offset vectors are in view space, not screen space, and thus in close-up camera
shots these vectors will be longer so that the SSAO sampling area remains constant
within the scene. This can mean more noise for close-ups, but also presents problems
when samples end up looking up outside the screen. There is no straightforward way to
deal with the edge case, as the depth information outside the screen is not present:
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rendering a wider area than what is seen in screen could help improve this, but is not a
robust solution that would work in all cases. The less objectionable way to deal with this
is to ensure that samples outside the screen return a large depth value, ensuring they
would never occlude any neighboring pixels. This can achieved through the “border
color” texture wrapping state.

To prevent unacceptable breakdown of the SSAO quality in extreme close-ups, we’ve
found it necessary to impose an SSAO screen-space sampling area limiter. In effect, if
the camera is very close to an object and the SSAO samples end up being too wide, the
SSAO area consistency constraint is violated so that the noise pattern doesn’t become
too noticeable. Another alternative would to simply vary the number of samples based
on the sampling area size, but this can introduce wide frame rate swings that we have
been eager to avoid.

SSAO Performance

SSAO can give a significant payback in terms of mood and visual quality of the image,
but it can be quite an expensive effect. The main bottleneck of the algorithm is the
sampling itself: the random nature of the sampling, which is necessary to minimize
noise, wreaks havoc with the GPU’s texture cache system and can become a problem if
not managed. The performance of the texture cache will also be very dependent on the
sampling area size, with wider areas straining the cache more and vyielding poorer
performance. Our artists quickly got in the habit of using SSAO to achieve a faked global
illumination look that suited their purposes: this required more samples and wider
sampling areas, so extensive optimization become necessary for us.

One method to bring SSAO to an acceptable performance level relies on the fact that
ambient-occlusion is a low-frequency phenomenon. Thus we’ve found there is generally
no need for the depth buffer sampled by the SSAO algorithm to be at full screen
resolution. The initial depth buffer can be generated at screen resolution, since we
reuse the depth information for other effects within the game and it has to fit the size of
the other MRTSs, but it is thereafter down sampled to a smaller depth buffer that is a
guarter size of the original on each side. The down sampling itself does have some cost
but the payback in improved texture cache afterwards is very significant.

SSAO and Global lllumination
Wide-area SSAO vs. Outline Enhancement
One thing we’ve quickly discovered is that our cinematic artists loved the quasi-global

illumination feel of the output. If the sampling area of the SSAO is wide enough, the look
of the scene changes from darkness in nooks and crannies to a softer, ambient feel.
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The SSAO implementation was thus pulled by the art direction into two somewhat
conflicting directions: on the one hand, the need for tighter, high-contrast occluded
zones in deeper recesses, and on the other hand, the desire for the larger, softer
ambient look of the wide area sampling.

In our case, we resolved this conundrum by splitting the SSAO samples between two
different sets of SSAO parameters: one quarter of our samples are concentrated in a
small area with a rapidly increasing occlusion function, while the remainder uses a wide
sampling area with a gentler function slope. The two sets are averaged independently
and the final result uses the value from the set which produces the most (darkest)
occlusion.
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5.6 Depth of Field

Figure 13. Depth of field as used in Starcraft Il for a cinematic feel.

Because deferred rendering had to use generate a normal and a depth buffer every
frame, we were naturally drawn to leverage this as much as possible. One of the post-
processing effects crucial for many of our story mode scene has been depth of field.
There has been a fair amount of interest in real-time depth of field rendering, as
covered in [SCHEUERMANNTATARCHUKO4] and [Demers05], for example. For storytelling we
will often focus the camera on a specific object to attract the attention of the viewer.
Here is a review of the problems we faced and how they were solved.

Circle of Confusion

The ingredient needed to perform the depth of field, which is common for real-time
depth of field algorithm, is to compute a blur factor, or circle of confusion (CoC) for each
pixel on the screen. We only are loosely to the definition of the circle of confusion,
which would be the radius of the circle over which pixels, or rays, are blurred — the only
point of importance is that higher levels of CoC needs to map to a blurrier image in
some kind of predictable gradient.
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Thus, the circle of confusion is art-driven instead of physics-driven. Artists specify a
reference point that is a certain distance in front of the viewing camera. From this point,
a full focused distance is specified — all depths whose distance from the reference point,
either in front or behind the reference point, is less than this distance are sharp. Beyond
this distance, the image progressively gets blurrier until it reaches the fully unfocused
distance where the blurriness is maximal.

Thus computing the circle of confusion comes down to sampling from the deferred
depth buffer and going through the following equation:

(DofAmount x max (0, Depth — FocalDepth — NoBlurRange))
saturate

MaxBlurRange — NoBlurRange

Equation 1. CoC as a function of depth.

Carr:era , Maximum Maximum
M= Blur Fades In Fades In Blur
(DOF Amount) (DOF Amount)

Figure 14. Depth of field regions.

Blurring

The circle of confusion value, for each pixel, can then be used to gradually blur the
image. The blur needs to be gradual as the CoC value increases, and not present under-
sampling artifacts.
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Simply varying the width of the Gaussian filter kernel to simulate different blur levels
doesn’t work too well; larger blur factors require more blur samples to look as good.
This is achievable by varying the number of samples per pixel, which unfortunately
requires use of dynamic branching in the pixel shader, whose market penetration wasn’t
as high as we needed it to be.

Thus a different approach is to generate pre-blurred images at fixed levels and linearly
interpolate the outputs from the two closest pre-blurred sample points. In practice, this
means blurring between four different reference images: the sharp image, two other
screen-sized images of increasing blurriness, and a maximal blur image with each side a
quarter of the original.

These four images can be generated, and the depth of field image effects can then
compute the CoC factor and use it to linearly blend between two of the images.

Edge Cases

The two previous steps work well to create the effect of blurriness in different area of
the screen based on the pixel depth, but edges pose problems that require special care.
To be convincing, depth of field needs to exhibit the following behaviors:

e Out-of-focus foreground objects should bleed unto objects behind them,
whether sharp or unfocused;

e Conversely, bleeding of unfocused background objects unto foreground objects
should be avoided — clearly visible, focused edges need to stay sharp.

However, the blurring process occurs by looking up samples from neighboring pixel and
doing a weighted, which requires us to restate these statements in a way that maps
better to how the algorithm is actually implemented, as follows:

e Avoiding sharp halos: Sharp pixels should not contribute to the weighted sum of
any neighboring pixels or they will create halos as well - partially unfocused
pixels should contribute more to the sum of neighboring pixels than more
focused ones.

e Bleeding of blurry objects over background: the blurriness of a single pixel does
not depend on the circle of confusion of that pixel alone; a nearby blurry pixel
with a large circle of confusion would have the effect of making the current pixel
blurry;

e Depth ordering of blurriness: Pixels in the background should not contribute to
the weighted sum of pixels in the foreground;
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Sharp objects should not contribute
to neighbor samples

Blurry background

Pixels in background should not

contribute to pixels in the foreground Sharp object

Blur halo

Blurry foreground objects should contribute
to nearby pixels even if those are sharp

Figure 15. Depth of field rules.

For the first constraint, we must weigh the Gaussian samples by the corresponding CoC
factors for each pixel. The sampled CoCs are renormalized so that the sum of all
sampled CoCs adds up to one and each sampled CoC is multiplied by the corresponding
sample. Thus, a sharp pixel will contribute less (or not at all) to neighboring pixels that
are blurry. Although the effect may not be correct in a strict sense, the most important
goal here is to eliminate any changes in color for blurry pixels when completely focused,
neighboring pixels are changing.

The second constraint can be solved by blurring the circle of confusion factors in an
image a quarter size per side, ensuring that any blurry pixels will cause neighboring
pixels to become blurry as well.

Blurring all CoCs will violate the third constraint however, causing background objects to
blur over foreground ones — we need to conserve some sense of depth ordering of the
blur layers. We can achieve this through the following process:
e Downscale and blur the depth map in an image a quarter size per side;
e Sample both the blurred and non-blurred depth maps;
e If the blurred depth is smaller (closer) than the non-blurred depth, use the CoC
from the blurred CoC map;
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e If the blurred depth is larger (further away) than the non-blurred depth,
compute and use the CoC for the current pixel only (no CoC blurring).

This effectively compares the Gaussian-weighted average of the cluster of pixels around
the current pixel and compares it with depth at that pixel only. If this average is further
away than the current pixel, then other pixels in that area tend to be behind the current
pixel and do not overlap it. Otherwise they are in front, and their CoC is expected to
affect the current pixel’s CoC (blur over it).

Putting It All Together

Putting all the constraints in place, we can put everything together using the following
process:

e Perform a full-screen pass to compute the circle of confusion for each pixel in
the source image and store the result in the alpha channel of a downscaled CoC
image buffer a quarter of the size on each side;

e Generate the medium blur image by applying a RGB Gaussian blur with each
sample weighted by the CoC on the source image;

e Generate the max blur image by downscaling the RGB of the source image into
an image buffer a quarter of the size on each side — the CoC and large blur
buffers can be the same since they use different channels;

e Blur the max blur image with the RGB samples weighted by the downscaled
CoC. The alpha channel, which contains the CoC, also gets blurred here, but its
samples are not weighted by itself.

e Downscale and blur the depth map into a downscaled depth image — it should
be noted in our case we reuse the downscaled depth for our SSAO pass as well
(but do not blur depth for the SSAO);

e Then apply the final depth of field shader, binding the source image, medium
and large blur/blurred CoC image, the non-blurred depth map and the
downscaled depth image to the shader. The depth of field shader:

o Computes the small blur value directly in the shader using a small sample
of four neighbor pixels;

o Computes the CoC for that pixel (the downscaled CoC would not match);

o Samples the non-blurred and blurred depth to compare them — use
computed CoC if blurred depth is further away than non-blurred depth,
otherwise use CoC value samples from blurred CoC image;

o Calculate contribution from each of the possible blur images: source,
computed small blur color, medium and large blur images based on the
CoC factor from zero to one;

o Sums the contribution of the small, medium and large blurs

o Output the alpha to include the contribution of the source (no blur)
image.
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Figure 15. Depth of field texture inputs & outputs. In the implementation some

components reuse the same texture, but they re shown separated here for clarity.

p fFocusDistance;
p fFullFocusRange;

p_sMediumBlurMap;

float p fDOFAmount;
float

float

float p_fNoFocusRange;
sampler2D

sampler2D p sLargeBlurMap;
sampler2D p_sCoCMap;
sampler2D

p_sDownscaledDepth;

// Depth of field amount.

// Distance in focus.

// Range inside which everything is in focus.
// Range at which everything is fully blurred.
// Medium blur map for depth of field.
// Large blur map for depth of field.

// COC map.

half ComputeCOC( float depth ) {
return saturate( p fDOFAmount * max( 0.0f,
p_fFullFocusRange ) / ( p_fNoFocusRange - p fFullFocusRange )

abs ( depth - p fFocusDistance ) -
)i
}

half4 Tex2DOffset( sampler2D s, half2 vUV, half2 vOffset ) {
return tex2D( s, vUV + vOffset *

half2( 1.0f / p vSrcSize.x, 1.0f / p vSrcSize.y ) );}

half3 GetSmallBlurSample( sampler2D s, half2 vUV ) {
half3 cSum;
const half weight = 4.0 / 17;
cSum = 0;
cSum += weight * Tex2DOffset( s, vUV, half2( 0.5f, -1.5f ) ).rgb;
cSum += weight * Tex2DOffset( s, vUV, half2( -1.5f, -0.5f ) ).rgb;
cSum += weight * Tex2DOffset( s, vUV, half2( -0.5f, 1.5f ) ).rgb;
cSum += weight * Tex2DOffset( s, vUV, half2( 1.5f, 0.5f ) ).rgb;

return cSum;

// Depth of field mode.

half4 PostProcessDOF ( VertexTransport vertOut ) {
float4 vNormalDepth = tex2D( p sNormalDepthMap,
float vDownscaledDepth = tex2D( p sDownscaledDepth,
half fUnblurredCOC = ComputeCOC( PIXEL DEPTH ) ;

INTERPOLANT UV.xy );

INTERPOLANT UV.xy ).a;

half fCoC = tex2D( p sLargeBlurMap, INTERPOLANT UV.xy ).a;
// 1f object is sharp but downscaled depth is behind,
if ( vDownscaledDepth > vNormalDepth.a )

fCoC = fUnblurredCOC;

then stay sharp
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half d0 = 0.50f;
half dl = 0.25f;
half d2 = 0.25f;

half4 weights = saturate( fCoC * half4( -1 / 40, -1 / d1, -1 / d2, 1 / d2 ) +
half4( 1, (1 -d2 ) /di, 1/ d2, (d2 -1) / d2 ) );
weights.yz = min( weights.yz, 1 - weights.xy );

half3 cSmall
half3 cMed
half3 clLarge

GetSmallBlurSample ( p sSrcMap, INTERPOLANT UV.xy );
tex2D( p sMediumBlurMap, INTERPOLANT UV.xy ).rgb;
tex2D( p sLargeBlurMap, INTERPOLANT UV.xy ).rgb;

half3 cColor = weights.y * cSmall + weights.z * cMed + weights.w * clLarge;
half fAlpha = dot( weights.yzw, half3( 16.0f / 17.0f, 1.0f, 1.0f ) );
return half4 ( cColor, fAlpha );

Listing 2. Depth of field shader.
5.7 Dealing with Transparent Object Rendering

It’s worthwhile to mention some of the issues with transparency, particularly with
respect to the fact that deferred rendering typically do not support transparency very
well, or at all. It should be noted that the challenges with transparent objects are not
unique to deferred lighting, and in fact if one is striving for absolute correctness,
transparency creates problems throughout the entire engine pipeline.

As is typical for any kind of deferred rendering techniques, transparencies are not taken
into account by the deferred renderer. We’'ve found however that lit transparencies
don’t contribute that significantly to the look of the scene as they will pick up the shade
of the objects behind them. We do tag some transparent objects selectively as being
affected by lighting, in which case these are forward rendered with a multi-pass
method. We've been careful to avoid hard cap limits of any sorts on the engine
whenever we can, and a multi-pass approach proved to be more scalable than a single-
pass one.

Another advantage of the multi-pass lighting approach is that there is no need for more
than a single shadow map buffer for the local lighting; the shadow map for each light
can be applied one at a time and applied in succession. This proved important because
the translucent shadow technology we’ve designed already needs a second shadow map
to render the effect.

We’ve found that in our environments transparencies are not present in an amount
sufficient to create very drastic lighting changes, except for a few specific pieces that

we’ve tagged manually for forward rendering.

So, in light of this, we didn’t strive to find clever solutions to fix problems with
transparencies with respect to deferred lighting. Other subsystems however, can create
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artifacts that are way more noticeable if absolutely no support for transparencies is
present.

Depth of field, for instance, has very disturbing artifacts if depth is not taken into
account for key transparencies. In this shot, we had a translucent egg that was showing
as very crisp along its unfocused neighbors. SSAO also has issues with transparencies,
especially for not-quite-opaque objects like bottles that effectively lose their ambient
occlusion.

For some of these cases, using a simple layered system worked well enough for us. The
depth map is first created from the opaque objects, opaque objects rendered, and
depth-dependent post-processing effects subsequently applied on them. Transparent
objects are then rendered as they would be normally from back to front, and key
transparencies are allowed do a pre-pass where they will output their normals and
depth to the deferred buffers. This effectively destroys the depth and normals
information for the opaque objects behind these transparencies, but since all post-
processing has been applied to these objects already, that information is no longer
needed.

After the pre-pass, one more pass is used to update the ambient occlusion deferred
buffer. The transparency itself is then rendered, and then another depth of field pass is
done specifically on area covered by the transparency.

This certainly makes rendering that particular transparency much more expensive, and
we only enable this option for key transparencies where maximum consistency is
needed. In simpler cases, we will cheat by allowing the transparency to emit it depth in
the depth of field pass (for very opaque objects) or simply work with the art to minimize
the artifacts.
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5.8 Translucent Shadows
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Figure 16. Translucent shadows allow objects such as smoke and explosion to cast
shadows.

Shadow maps are one of the earlier examples of successfully using screen-space
information to resolve shadowing problems that otherwise are much more difficult to
deal with in world space. In this section, we will show how extending the shadow map’s
per-pixel information with some extra channels of information can be used to easily
augment shadow maps with translucent shadow support.

The shadow map algorithm is extended with a second shadow map that will hold the
information for translucent shadows only; the regular shadow map will still contain the
information for opaque shadows. In addition, a color buffer to hold the color of the
translucent shadows. However, on most hardware a color buffer of the same size of the
shadow map needs to be bound whenever the shadow map is rendered, as most
hardware does not support having a null color render target. In most games this color
buffer is simply set to the lowest bit depth available to minimize the waste of memory,
and the color buffer is otherwise not used. We are thus taking advantage of this “free”
color buffer.
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In the first pass, the opaque shadow map is filled up as it normally would be, rendering
only opaque objects. Then, transparent shadow objects are rendered in our second
shadow map for transparent objects with z depth write on, no alpha testing and a
regular less-equal z-test. This will effectively record the depth of the closest transparent
object to the light.

The transparent shadow color buffer is first cleared to white and is then filled by
rendering the transparent shadow objects, from front to back, with the render states
thay would normally be used in the regular rendering, no depth write and the less-equal
z-test. In this stage we will be using the opaque shadow map as the z-buffer when filling
the color buffer, ensuring no colors are written for translucencies hidden by opaque
objects. The front to back ordering is necessary because we are treating these
transparencies as light filters. The light hits the front transparencies, and gets filtered as
it hits each transparent layer in succession.
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~ 7
P 7~
~ e 4
7
~ - 4
~ e
-~ — _
Opact objects cast
P s Ve shadows normally
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Both red and blue shadow
colors are filtered

Figure 17. Light filtering process.
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The rendering of the actual translucent shadows then proceeds as follows:

e Perform shadow test with opaque shadow map and translucencies shadow map

e If we failed the translucent shadow map test, modulate by the color in the
transparent shadow color map

e Modulate by the result of the opaque shadow map.

This effectively gives us the following desired behavior:
e Passing both tests doesn’t color the light;
e Passing the opaque test but failing the translucent test will always color the light
by the translucent shadow color;
e Failing the opaque test will always remove the light contribution.

5.9 Conclusions

Storage of per-pixel information in off-screen buffers opens up a wide array of
possibilities for screen-based effects. Screen-space data sets, although incomplete, are
straightforward to work with and can help to unify and simply the rendering pipeline.
We’ve shown here a few ways that we record and use these screen-space data sets in
Starcraft 1l to implement effects such as deferred rendering, screen-space ambient
occlusion, depth of field, and translucent shadow maps. The resulting per-pixel
techniques are easy to scale and manage and tend to be easier to fit in a constant
performance footprint that is less dependent on scene complexity.
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