
(~) ~ Computer Graphics, Volume 21, Number 4, July 1987

Set Operations on Polyhedra Using
Binary Space Partitioning Trees

W i l l i a m C. T h i b a u l t

G e o r g i a I n s t i t u t e o f T e c h n o l o g y

A t l a n t a , G,4 3 0 3 3 2

a n d

B r u c e F. N a y l o r

,4 T & T B e l l L a b o r a t o r i e s

M u r r a y H i l l , N J 0 7 9 7 4

Abstract
We introduce a new representation f o r polyhedra by showing how
Binary Space Partitioning Trees (BSP trees) can be used to represent
regular sets. We then show how they may be used in evaluating set
operations on polyhedra. The BSP tree is a binary tree representing a
recursive partitioning o f d-space by (sub-)hyperplanes, for any
dimension d. Their previous application to computer graphics has
been to organize an arbitrary set o f polygons so that a fas t solution to
the visible surface problem could be obtained. We retain this pro-
perty (in 3D) and show how BSP trees can also provide an exact
representation o f arbitrary polyhedra o f any dimension. Conversion
f rom a boundary representation (B-reps) o f polyhedra to a BSP tree
representation is described. This technique leads to a new method for
evaluating arbitrary set theoretic (boolean) expressions on B-reps,
represented as a CSG tree, producing a BSP tree as the result.
Results f rom our language-driven implementation o f this CSG
evaluator are discussed. Finally, we show how to modify a BSP tree
to represent the result o f a set operation between the BSP tree and a
B-rep. We describe the embodiment o f this approach in an interactive
3D object design program that allows incremental modification o f an
object with a tool. Placement o f the tool, selection o f views, and per-
formance o f the set operation are all performed at interactive speeds
for modestly complex objects.

CR Categories 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - object representation and geometric algorithms.

Keywords - polyhedra, set operations, geometric modeling, geometric

search, point location.

I . Introduct ion

While the study of polyhedra has an ancient history, computer science
has given it renewed attention in the various sub-disciplines of compu-
tational geometry, geometric modeling, computer graphics, robotics,
and computer vision. Its attractiveness stems from the relative simpli-
city of linear computations when compared to non-linear, coupled with
the fact that linear approximations of non-linear sets can often be quite
satisfactory. An important example of this comparative simplicity is
set operations: union, intersection, difference and exclusive-or (and
their complements). The algebra of set operations defined on the col-
lection of linear sets of any dimension ~< some d is closed (assuming a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the AC M copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1987 ACM-0-89791-227-6/87/007/0153 $00.75

countable number of operations). This is not true of non-linear sets;
for example, the intersection of two quadrics (second degree) can be a
fourth degree curve. When computational speed is important, such as
in interactive object design, using polyhedral approximations of non-
linear solids can provide a very effective alternative to non-linear com-
putations. On the other hand, for operation~ which are not speed-
critical, a second unapproximated non-linear representation can be
used, if the greater accuracy is needed.

The most prominent method of representing polyhedra at this t ime
would appear to be boundary representations (B-reps): in a d dimen-
sional space, a d-polyhedron (also called a d-polyto]ge) is represented
by a set of (d-1) -polyhedra , called faces, which are in turn
represented by (d-2) -po lyhedra , and so on until d equals 0, at which
point the d coordinates of a vertex are used. An alternative suitable
for representing convex polyhedra is provided by the volumetric
approach, where the intersection of a set of halfspaees determines a
polyhedron.

In this paper, we develop a new approach first presented in [Nay186]
and describe in greater detail in [Thib87]. It is based on the dimen-
sion independent concept embodied in the Binary Space Partitioning
Tree, abbreviated BSP tree, which, at its simplest, is a binary tree
whose non-leaf nodes are labeled with hyperplanes and whose leaves
correspond to cells of a convex polyhedral tessellation (partitioning) of
d-space. The approach provides what is essentially a volumetric
representation of general linear polyhedra. What we mean by general
is that any genus (handles/holes) is permissible, any number of con-
net ted components (separate objects), and regions of connectivity with
no interior, such as two parts connected only by a vertex. More gen-
erality is available in that the interior of the polyhedra need not be
completely bounded, i.e. it may be (semi-)infinite.

Previous work has established the BSP tree as an effective representa-
tion of polyhedra for efficient visible surface determination, both in
polygon tiling environments [Schu69] [Fueh80] [NaylSl] [Fueh83]
and for ray-tracing [Nay186] (Figure R A Y - T R A C I N G) . In this
paper, we concentrate on the problem of evaluating set operations, the
set theoretic analog of boolean operations, defined on 3D polyhedra.
This takes two forms. One begins with a set (theoretic) expression
represented as a tree (i.e. a CSG tree) defined on a set of polyhedra
represented by B-reps. The method produces the polyhedron defined
by the CSG tree by constructing its (non-unique) BSP tree representa-
tion. The resulting tree can then be used for rendering by the tech-
niques referred to above or as input to the second approach. The
second approach takes a BSP tree as one operand and a B-rep as the
other and produces a new BSP tree determined by the set operation via
modification of the original tree. We have used this technique as the
basis for an interactive program that supports modification of a work
piece, represented by a BSP tree, through the adding, subtracting or

153

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

intersecting of a tool, represented by a B-rep.

2. Representat ion of Po lyhedra by B S P Trees

2.1 Generic BSP Trees l

A BSP tree represents a recursive, hierarchical partitioning, or subdivi-
sion, of d-dimensional space. It is most easily understood as a process
which takes a subspace and partitions it by any hyperplane that inter-
sects the interior of that subspace. This produces two new subspaces
that can be further partitioned. Figure BSPT illustrates the relation-
ship between the partitioning of space and the corresponding BSP tree.
In (a), we see a recursive partitioning of the plane. Note how parti-
tioning first by u produces two subspaces whose subsequent partition-
ings proceed independently of each other. The distinction between the
two halfplanes formed by a line is indicated by the orientation of the
normal vector to each line (indicated by arrows). Which of the two
possible orientations is used is typically arbitrary. Now referring to
(b), we see that in the corresponding BSP tree, each (sub-)line is asso-
ciated with an internal node of the tree. The right subtree of each
internal node represents the region of the plane lying to the side of the
line pointed to by the normal. The left subtree represents the other
side. The resulting partitioning produces a set of unpartitioned sub-
spaces that correspond to leaves of the tree (labeled with digits).

, /

Y' 6 / \

Ca)

f \
/ \
' / \

5 6
(b)

Figure BSPT. Geometry of a 2D partitioning (a) and its BSP tree (b).

More formally, for a hyperplane

H = {(xl xd) la~x l + ' • • + adxd+ aa+l ffi 0},

the right (or in B-rep parlance, the "front") halfspace of H is

H-I- ~ { (3 f l x a) l a l x l d- • , • d- adXd+ aa+j > 0},

and the left (or "back") halfspace of H is

H - = {(xl x a) [a l x l + • " " + adXd+ aa+l < 0}).

The right side of H lies to the side of H in the direction of the
hyperplane's normal, (al,...,aa).

Each node v represents a region of space R (v) (to be defined below).
Leaves correspond to un-partitioned polyhedral regions, which we call
cells. Each internal node v of the tree is associated with a partitioning
hyperplane, Hv, which intersects the interior of R (v). The hyperplane
partitions R (v) into three sets: R (v) f') H~ +, R (v) f') H ~ , and

R (v) A Hr. The d-dimensional region in H + is represented by the
right child of v, v.right, and the region in H~- is represented by the
left child, v.left. The intersection of H~ and R (v) is called the sub-
hyperplane of Hv, indicated by S H p (v) , and is of dimension d - 1 .

e (v) is the intersection of open halfspaces on the path from the root
to v. More precisely, for each edge (VhV2) in the tree we associate a
half space HS(v l , v2) defined as follows: for any node v, let

I. This section is an adaptat ion of work presented in [NaylSI] .

HS(v,v . le f t) denote H~ , and HS(v,v .r ight) denote Hv +. Let E (v)
denote the set of edges on the path from the root to v. Then

R (v) ~ e ~ v H S (e) . For the root node, whose E (v) is empty, R (v) is

defined to represent all of d-space. Thus, R (v) is convex, non-empty,
may not be completely bounded, and is topologically open. It also fol-
lows that sub-hyperplanes have the same properties. An important
relationship between sub-hyperplanes and regions is that the sub-
hyperplanes associated with nodes on the path from the root to v con-
tain the boundary of R (v). Finally, a trivial BSP tree consists of only
a single node (a cell).

2.2 Representation of Regular Sets

A regular set S has an interior, an exterior, and a boundary denoted
by int S , ext S , and bd S , respectively. A set is regular if it is the
closure of its interior [Requ78], i.e S = el(int S), where cl denotes
closure. (The closure of a set consists of the set together with its
boundary.) Given a BSP tree, we can use it to represent linear regular
sets, and polyhedra in particular. We need to simply classify each cell
as either in the set or out of the set. Each leaf then has at least one
attribute, membership, with values E { in, out }. For example, in Fig-
ure BSPT, consider the set defined when cells 1 and 5 are assigned the
value in and the rest are assigned out . Since each cell is open (and
therefore, has an interior) and is non-empty by construction, we can
take the union of all in-cells and then form the closure of this union, to
produce a regular set.

S • c l (y Ci), f o r a l l C i f f i i n

Note that points lying between two in-cells are included in S and are
in int S . The boundary of the set consists of points between in-cells
and out-cells, and all such points lie in sub-hyperplanes of the tree.

bd S ~ ~ cl(C~) 0 c l (Cj) , f o r alI Ciffi in, C j= out

Methods of constructing such representations will be described in sub-
sequent sections.

2.3 Point Classification

We can show the sufficiency of the above representation by solving a
problem studied in computational geometry [Prep85]. The point
classification problem can be stated: Given a set S and a point p ,
determine if p lies in int S , ext S , or bd S . We assume S is regular
and we have a BSP tree representing S . Figure POINT-CLASSIFY
gives an algorithm for solving this problem in d-space. The recursive
process begins at the root of the tree and uses location of a point with
respect to a hyperplane to control the search. To solve the problem,
we must know whether the neighborhood of p is homogeneous, and
therefore in or out , or non-homogeneous, and therefore on. If p lies
in a cell, its neighborhood is known to be homogeneous. When p lies
on some Hv, the search must be performed on both subtrees to deter-
mine all cells in whose closure p lies. If the value of all such cells are
not the same, p is known to be on, otherwise it is known to be in or
out , depending upon the value. (Note that the search could terminate
whenever the first on value is encountered). While bd S has measure
zero, it is given non-zero measure numerically by specifying an interval
about zero which is mapped to "on the hyperplane", thus giving thick-
ness to the hyperplanes. Machine precision determines a lower bound
on this interval.

In [Kala82], this problem is solved for 3D in O (n) for a B-rep with n
faces. A result in [Nayi81] shows that this could be at most O (n) for
any BSP tree constructed from n faces (the tightest known upper-
bound on tree size is O(n d)). However, when a balanced BSP tree is
of size O (n) (which may or may not be possible for a given set of
faces), this can be solved in O (log n).

154

~ Computer Graphics, Volume 21, Number 4, July 1987

procedure point_classify (p : point; v : BSPTreeNode)
returns {in, out, on}

if v is a leaf
return the leaf's value (in or out)

else
let d m dot_product(p, Hv).
if d < 0 then

return point_classify (p, v.left)
else if d > 0 then

return point_classify (p, v.right)
else (* p lies on the partitioning hyperplane *)

I : ~ point_classify (p, v.left)
r : = point_classify (p, v.right)
if I ~ r then

return r
else

return "on"
end point classify ;

Figure POINT-CLASSIFY.

2,4 Augmented BSP Trees

A common means of augmenting the generic BSP tree is to include
other sets within the BSP tree structure, In particular, leaves can each
include a collection of sets (objects) contained completely within the
corresponding cell, e.g. [Schu691, and similarly, internal nodes can
include sets lying in the corresponding sub-hyperplane, e.g. [Fuch80].
Traditionally, the motivation for this has been the visible surface prob-
lem in 3D. Given an arbitrary viewing position, a traversal of the tree
can induce a visibility priority ordering on the contents of the various
subspaces (cells and sub-hyperplanes). Because of the usefulness of
boundary representations for polygon tiling, polygons have been stored
at the various nodes. We retain this visibility property by associating
sets of polygons with internal nodes, where each set lies on the node's
sub-hyperplane, and are in the boundary of the represented
polyhedron. At each node v, these faces are separated into those
whose normals have the same orientation as the normal of Hv and
those whose orientation is opposite.

3. B-rep -- ' BSP tree

We now examine converting a B-rep into an equivalent BSP tree.
Essentially any of the many varieties of B-reps can be used, as long as
they are sufficient and form a valid representation of a polyhedron.
We use the term face to refer to the (d-i)-dimensional boundaries of a
d-polyhedron, H/ to denote the hyperplane containing a face f , and
we assume that face norma|s point to the exterior.

The approach is essentially one that first appeared in [Fuch80] with
one significant extension : assignment of values to leaves. The algo-
rithm begins with a set of faces forming one or more disjoint polyhe-
dra. At each stage, the recurslve process selects a hyperplane H and
partitions the current set of faces F into three sets of faces, F(H+),
F(H-) , F (H) , corresponding respectively to the three subspaces
H +, H - , H . The partitioning of a face, f E F, is defined as the
result of forming the following three sets, one or two of which will be
empty:

f+ =cl(H÷ ("1 int f), f - mcl(H- ("1 int f) , f o zcl(int(H 0 int f)),

where int is with respect to Hf. Partitioning all faces of F produces
F (H +) , F (H -) , F(H) , respectively. The set F(H) is retained at a
new BSP tree node v (separated into same and opposite lists). The
process then proceeds recursiveiy on the other two sets until the
current list of faces is empty (Figure BUILD-BSPT).

Figure CONCAVE shows how the algorithm can create a BSP tree
from a concave polygon. One note worthy consequence of this process
is that each polyhedron is decomposed into a set of convex regions (in-

a

in out in out in out

Figure CONCAVE. A concave set and its BSP tree.

procedure Build_BSPT (F : set of faces) returns BSPTreeNode

Choose a hyperplane H that embeds a face of F;
new BSP : = a new BSP tree node with H as its

partitioning plane;
<F_right, F_left, F_coincident, > : - partition faces of F with H;
Append each face of F_coincident to the appropriate face list

of new_BSP;

if (F_left is empty) then
if (F coincident has the same orientation as H) then

(* faces point "outward" *)
new_BSP.left : ~ "in";

else new_BSP.left : - "out";
else

new_BSP.left :-- build_BSPT(F_left);

if (F_right is empty) then
if (F coincident has the same orientation as H) then

new BSP.right : ~ "out";
else new_BSP.right : - "in";

else
new_BSP.right : - build BSPT(F_right);

return new_BSP;
end; (* Build_BSPT *)

Figure BUILD-BSPT. Algorithm to build a BSP tree from a boundary
representation.

cells). Note that the only aspect of this algorithm dependent upon the
particular B-rep variant is the splitting of a face by a hyperplane.
While any order of selection wilt produce a BSP tree representing the
same set, some orders produce more desirable trees. The issue of

selecting partitioning hyperplanes can be somewhat complicated, and is
discussed briefly in section 5.1.

It is necessary, however, that all points on the boundary of the polyhe-
dra lie in sub-hyperplanes of the resulting BSP tree (section 2.2
above). This is accomplished most simply by always choosing a hyper-
plane that embeds some face among the current set of faces. Eventu-
ally, all points on the original fades will lie in snb-hyperplanes. The
second requirement is the correct classification of cells. Assignment of
values to leaves occurs when the partitioning of a set of faces finds no
faces on one side of the partitioning hyperplane. That region is then
known to be homogeneous, i.e. the region lies either entirely within the
interior of one of the polyhedra or entirely in the exterior of all the
polyhedra. We know this because for it to be non-homogeneous, there
would be some part of a boundary to make it so, i.e. to mark the tran-
sition between inside and outside. Therefore, the region forms a cell
and can be classified as in or out. In this algorithm, differentiating
between the two cases is simple. When hyperplanes are chosen from
the (hyper)plane equation of some face, we use the fact that normals
point to the exterior to deduce the fact that a left leaf must be in (in
the back-halfspace of the face) and a right leaf out (in the front-

155

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

halfspace). Also, it is not difficult to show that when one subtree of v
is a cell, any faces coincident with H~ wilt all have the same orienta-
tion.

Another quite similar approach involves an idea that we will need
later: the concept of inserting a face into a BSP tree. Let us say that
we had used the above algorithm to build a BSP tree out of only n - 1
of the n faces. We could "add" the last face f to the tree in the fol-
lowing way. Let v be some node in the tree, initially equal to the root.
Partition f by Hr. If it is coincident, add it to the appropriate face
list of v. Otherwise, pass any part of f lying in H~- to v.left, and simi-
larly any part in H + to v.right. Now repeat the process recursively on
the subtrees. If and when a part of f reaches a leaf, create a new
node. Now, if one begins with a trivial BSP tree, and inserts each face
one-at-a-time, a BSP tree representing the polyhedra will be con-
structed.

Before leaving this discussion, we should point out that a much simpler
case occurs when the input is a single convex polyhedron P of n faces.
The above algorithm, when restricted to partitioning hyperplanes that
embed a face, will always produce the same tree structure with n
nodes independent of the order in which faces/hyperplanes are selected
(Figure CONVEX). Each right child is a leaf with value out and the
only left leaf has a value in representing int P. This structure is very
similar to a list of the minimal set of (closed) halfspaces whose inter-
section equals P.

/\o t
/\out

Figure CONVEX. A convex set and its BSP tree.

4. E v a l u a t i o n o f Se t O p e r a t i o n s U s i n g B S P trees

Since we are concerned with regular sets, we are interested only in the
regularized set operations [Requ78], which are denoted as such by an
asterisk: O *, U *, - * , and ~ * . First, consider the unary comple-
mentation operator. Given a BSP tree representing a set S , a BSP
tree representing its complement, ~ * S , can be formed by simply com-
plementing the cell values: all in-cells are changed to out-celts and all
out-cells to in-cells. Any boundary polygons at internal nodes must
have their orientations reversed as well. A boundary representation
can be similarly complemented by reversing the orientation of every
face.

To evaluate binary operators, we wilt use expression simplification in a
geometric setting. Consider for example the expression S~ f"l * $2.
If we have determined that, for some region R, that R C_ ext $2, then
the expression in R may be simplified to Sl I"1 * 0 - 0, where 0
denotes the empty set. If instead R ~ int $2, the expression reduces
to $1 I"1 * UR - Si , where /JR is the universal set restricted to R. In

either ease, we can perform the simplification without any knowledge
of the structure in R of St , which could be an arbitrarily complex
sub-expression on arbitrarily complex objects. Analogous cases exist
for the other operations (Figure SIMPLIFY). This has been called
"pruning" in the context of CSG trees.

To utilize this technique we must partition the space into regions such
that at least one operand is homogeneous in each region. That is,
given the expression S i op $2 defined on some space, one must find a
partitioning of that space such that for each region Ri of the partition-

op

U*

N,

left operand right operand
S in
S out
in S

out S
S in
S out
in S

out S
S in
S out
in S

out S

result
in
S
in
S
S

out
S

out
out
S

out

Figure SIMPLIFY. Expression simplification rules. S is an arbitrary regular
set.

ing, Ri c i n t S) or R~ c_ ext S) , j ~ 1 or 2. For an expression o f n
operands, this property may need to hold in each Ri for up to n - I of
the operands, depending on the expression. This technique appears in
a number of places, e.g. [Wood82] [Tilo84], and seems fundamental
to the problem, We use a BSP tree to partition space to achieve these
conditions.

4.1 BSP Tree < o p > B-rep ---' BSP Tree

Given a BSP tree 7 ~ representing a polyhedron T, and a B-rep /~
representing a polyhedron B, we wish to evaluate T o p B or B o p T,
where op is a regularized set operation. In the case of the difference
operator S~ - * $2, we choose to complement the right operand and
evaluate the equivalent Sl A * ~ * $2 3. Now, the approach is to

perform the set operations on open sets only, since these are closed
under standard (non-regularized) union and intersection. If the boun-
dary of the result is needed, it is explicitly computed (see section 4.3
below). We will need to classify T and B with respect to each other.
This is achieved by discovering parts of one that lie in the interior or
exterior of the other. We refer parenthetically to Figure SET-OP,
which illustrates T - * B.

We begin by inserting collectively into T all of the faces of/~. As the
faces filter down into T we can discover which if any of the subtrees of

lie entirely in int B or ext B. When at some node v, no part of/Y
is found to lie on one side of Hv, say, the left side, then R (v.left) must
be homogeneous with respect to B (e.g., x.right and z.right in the
figure), as explained in section 3. A general method for determining
whether the region is in int B or ext B is given below in Section 4.5.
When this occurs, the subtree rooted at v.left is either left untouched,
or is replaced by a leaf, depending upon the simplification rules (in our
example, both x.right and z.right are not modified). If it is also the
ease that no face of B is coincident with Hv, then the sub-hyperplane
of v has also been classified with respect to B. The faces of v are kept
or deleted according to the same simplification rules (e.g, x's sub-
hyperplane is in ext B and its face is kept). Deletion of v may also be
possible (see section 4.4).

The insertion process results in/~ being distributed among some subset
of the subspaces of T, i.e. cells or sub-hyperplanes. The reaching of a
leaf l by some subset of the boundary, Bt, means that Bt has been
classified with respect to T (e.g. the faces in y.right and z.left in (3)).
The operation can then be evaluated since we have a region in which
one operand, T, is homogeneous. The result is either T 's value (e.g.
y.right) or B's value (e.g.z.left) in the region represented by the leaf,
depending upon the particular operation and the value of the leaf, as
given in Figure SIMPLIFY. If the value is T's, then the faces of/Yi

it is possible to gain a little in efficiency by performing the ¢omplementation as part
of the evaluation so that only the parts included in the result are actually
complemented.

156

~ Computer Graphics, Volume 21, Number 4, July 1987

x Y

\

(1) Initial geometry.

/ ~z \

(4) Resulting partitioning.

x -* (pq,qr,rs,sp) x

/ \ / \
y out y out ("1 * out

/ \ / \
z out z out i~ * (s's,sr,rr')

/ \ / \
in out in I~ * (r'q,qp,ps') out A * out

(2) Initial representations. (3) BSP tree after classifying (qp,rq,sr,ps).

x
/

/ Y \

X O U t
/ \

u out
. / \
i n v

/ \
in w

in out

(5) Final BSPtree .

Figure S E T - O P . B S P tree - * B-rep ~ B S P tree.

\
O U t

are discarded (as in y.right); otherwise]b is "extended" by replacing
the leaf with a subtree built from the faces of/~t (as in z.left). This

can be performed by the procedure Build-BSPT, given earlier. Thus,
the cell is "refined" to reflect B's value in the region. The tree now
represents the desired set. We refer to this algorithm as the incremen-
tal set-op evaluation algorithm because it can be used to create a
polyhedron by a series of "incremental" modifications to an initial
polyhedron. The algorithm is summarized in Figure I N C R E M E N -

TAL SET-OP.

4.2 CSG on B-reps ~ B S P Tree

A Constructive Solid Geometry representation (CSG) of a set S is a
binary tree in which the internal nodes represent (regularized) set

operations and leaves are instanced primitives (such as blocks, cones,

etc.) [Requ80]. One can classify some arbitrary set s with respect to
S by first classifying s with respect to each primitive, and then com-

bining the classifications according to the set theoretic expression
represented by the CSG tree [TiloS0][Roth82]. An alternative is to

convert the CSG representation to a more explicit form, such as a B-

rep or BSP tree, and classify with respect to that representation. The
algorithm we now present provides this latter approach.

We define a CSG evaluation problem 71" as a pair (7, R), where 7 is a

CSG tree with polyhedral primitives represented as B-reps or as trivial
BSP trees (representing o or U), and where R is a convex region of
d-space on which 7" is defined. The algorithm returns a BSP tree

which represents the same set in R as r . Start ing with the problem 71"
= (T, R), the algorithm chooses a hyperplane H to partition the prob-

lem into two sub-problems, 7 f l e f t = (Tleft, R (7 H -) , and

7r,ight = (7"rigm, R ('] H+). The root of the tree returned has H as

its partitioning hyperplane, and its left and right subtrees are the
results of the recursive evaluation of "Wleft and "n'right, respectively. The

recursion is terminated when the current CSG tree reduces to a trivial
BSP tree (a cell).

The algorithm is quite similar to Build-BSPT of section 3, with one

important difference: rather than having just a simple list of faces to
partition, we have a CSG tree with faces at its leaves. Figure CSG-

EVALUTATION describes the algorithm. As before, a hyperplane H
is chosen at each stage that embeds a face using a heuristic (Section
5.1). Two copies of the CSG tree are generated and modified to
represent the set in each of the two halfspaces of H. This entails for

i f op = - * then
B :-- Negate B-rep(B)
o p : = ~ *

procedure Ineremental_Set_op
(op : set_operation ; v : BSPTreeNode ;

B : set of Face) returns BSPTreeNode
if v is a leaf then

case op of
U * : case v.value of

in : return v
out : return Bui ld_BSPT(B)

N * : case v.value of
in : return Build B S P T (B)
out : return v

else
<B_le f t , B_right, B_coincident> :-- partition B with H v
if B left has no faces then

status : = Tes t_ in /out (H, , B coincident, B_right)
ease op of

U * : case status o f
in : discard B S P T (v.left)

v.left : - new "in" leaf
out : do nothing

A * : case status o f
in : do nothing
out : d iscard_BSPT(v.left)

v.left :m new "out" leaf
else

v.left : = |neremental_Set._op(op, v.left, B_left)

if B_right has no faces then
(* similar to above *)

else
v.right : z lncremental_Set. .op(np, v.right, B__right)

return v

end lncremental_Set_op ;

Figure I N C R E M E N T A L S E T - O P . Psuedo code for the incremental set
evaluation algorithm.

each primitive replacing the faces of that primitive in the respective
CSG trees with the subset of the faces that lies in each halfspace.

157

~ SIGGRAPH '87, Anaheim, July 27-31, 1987
I ~ U ~ l

Faces coincident with H are retained at the new node. Detection of
homogeneous regions allows CSG tree simplification using the rules in
Figure SIMPLIFY. If the CSG tree is reduced to, in effect, a single
value (in/out), the problem in that region has been solved and is
represented by a cell of the BSP tree. The entire problem, then, is
solved through the discovery/creation of regions which are homogene-
ous with respect to the defined set, where each region is represented by
a different cell of the resulting BSP tree.

procedure Evaluate_CSG (r : CSG Tree) returns B S P T r e e

choose a face f o f a primitive of r
v : = new BSPTreeNode ; Hv := H f
• T l e f t * ~.right > l_.m. Split_CSG (r, Hv)

fief, : J Simplify_CSG (rleft)
if rteft represents O then

v.left : = new "out" leaf

else i f rteft represents U then
v.left : = new "in" leaf

else
v.left : = Evaluate_CSG (rte/t)

(* s imi lar code for z~igh z *)

return v
end; (* Evaluate_CSG *)

procedure Spl i t_CSG (r : CSGTree; H : plane_equation)
returns < CSGTree , CSG Tree >

i f r is not a primitive then

rteft := copy (r.root)
r,ight := copy (r .root)
<rtefl . left , r~ight.left> : = Spl i t_CSG (r. left , H)
<rteft .r ight , fright.right> : = Spl i t_CSG (r .right, H)

else
< r l e f i , f r ight , rcoincide m > : = partition r with H
if r l e f t = 0 then

T~ft = Test in/out (H, rcoinciaent, Tright)
else i f 7right ~ 0 then

Trlght ~ Test_in/out (H, Tcoincident , Tlef t)

Add Tcoincident to V'S face lists

return <fief t, "[right :>

end; (* Spl i t_CSG *)

Figure CSG-EVALUATION.
tree to a B S P tree.

Algor i thm for converting from a CSG

4.3 Boundaries

The two algorithms described above produce, in effect, a generic BSP
tree which is sufficient for point classification and ray-tracing. While
certain faces were retained at internal nodes, these no longer
correspond necessarily to the boundary of the set S represented by the
tree S . Since B-reps are useful for rendering via polygon tiling, and
the BSP tree can induce a priority ordering on the faces, we may wish
to generate the boundary faces of S . This requires that for each node
v of ,~ , we find and store at v, bd S N S H p (v) (where S H p (v) is
the sub-hyperplane of v). There are two alternatives. One is to dis-
card the old faces entirely and generate the boundary faces directly
from the generic BSP tree using a technique described in [Thib87].
The second, which- we will describe here, constructs the new faces from
the faces of the operands.

The boundary of the result of any set operation is known to be a subset
of the boundaries of the operands. Now, since bd S is known to lie
entirely within the sub-hyperplanes of S , only the parts of the original

faces which lie in these sub-hyperplanes can possibly be in bd S .
These two facts imply that the faces retained at S ' s nodes form a

superset of bd S , i.e. their union contains bd S , and the discarded
faces do not contain any subset of bd S . It also immediately follows
that for a given node v, any part of bd S lying in the S H p (v) must
be a contained in the region covered by the faces retained at v. How-
ever, parts of these faces may lie in either int S or ext S . To find the
on parts of these faces, we can insert them into the subtrees of v,
analogous to the technique used in point classification for points lying
in sub-hyperplanes. This produces a set of new faces, a subset of
which form bd S I") SHp(v) , and this subset is retained at v (as

opposed to extending the tree as in sections 3 and 4.1).

4.3.1 Class i fy ing Faces . Consider for the moment the case where
v.right is a cell with value out , as at node y in Figure SET-OP. Then
the boundary contained in the S H p (v) is precisely the points lying
between this out-cell and those in-cells in v.left whose closure intersects
Hr. Moreover, the orientation of the boundary faces must be that of
Hv, since they are to point to the exterior, which by construction lies in
v.right. Therefore, faces in the opposite-face list cannot be in bd S .
Now, if we classify the same-faces by inserting them into v.left, the
resldting faces which are classified as in with respect to v.left, i.e those
which reach in-cells, must lie in bd S . Those in out-cells would be
between two out-cells and thus known to lie in ext S . These can be
discarded. As an example, in Figure SET-O, a face of the original
tree at node y , when inserted into y.lef t would be split into three
pieces, two of which are in and the third (middle piece) is out .

Now, to extend this for an arbitrary v.right, we first take the in-faces

from the v.left insertion/classification above and insert/classify then
with respect to v.right. The faces resulting from this insertion that are
classified as out are then known to lie between an in-cell and an out-
cell, and therefore in bd S . Now, the same process applied to the
opposite-faces, but with the insertion sequence reversed (v.right then
v.left), produces faces in bd S whose orientation is opposite of H~.

In the case of the incremental algorithm, we can exploit the fact that a
single set operation is being evaluated, and use its semantics to avoid
inserting faces into both subtrees. Consider union. We know that the
neighborhood [n the back-halfspace of a face of either operand is in the
interior of the result. Therefore, we know a priori that same-faces
inserted into v.left will all land in in-cells, and similarly for opposite-
faces inserted into v.right. Thus, each face needs only to be classified
with respect to one subtree: same-faces with respect to v.right, and
opposite-faces with respect to v.left. The resulting faces that land in
out-cells lie on the boundary, since the other side is known to be in-
cells. For intersection, a similar analysis indicates that same-faces
should be inserted into v.left, opposite-faces into v.right, and that
resulting faces lying in in-cells should be kept.

While the above technique guarantees that the union of the remaining
faces is exactly bd S , it does not guarantee that the set of faces at
each node are disjoint. If the faces are given the same attributes, such
as color, this redundancy will not affect renderings of the object, other
than to possibly increase time and space requirements. However, this
redundancy can be eliminated by merging the faces, i.e. by forming for
each node independently the union of the same-faces and separately
the union of the opposite-faces.

4.3.2 Face Merg ing . Merging of faces can be performed by the CSG
evaluation algorithm in the dimension of the faces, optimizing for the
fact that there is only one type of operator: union. Conceptually, we
have a CSG tree representing f t I,.,I f 2 U " " " U f , , for n faces.
The result is a BSP tree, in (d-1)-space, where the (d - l) value of
"in" corresponds to the d-value of "on", and similarly "out" corresponds
to "not-on". Faces lying in a hyperplane H are orthogonally projected
into a coordinate hypcrplane by dropping the coordinate corresponding

15g

~ Computer Graphics, Volume 21, Number 4, July 1987

to the largest coordinate of H ' s normal. The tree building process
proceeds a s before, but in the lower dimension. The recursion ter-
minates when regions are discovered that are either completely covered
by some face or contain no faces.

Let us consider the case where d = 3. If convex polygons are the
desired output, it is relatively straightforward to maintain a vertex-list
representation of the regions of the 2D tree. All in-regions yield
polygons whose vertices are projected back into H . Now, for concave
polygons, we must find the (d-2) boundary of the in-regions. This
means that finding the 2D boundary of a 3D set requires recursing in
dimension and finding the 1D boundary of 2D set and subsequently the
0D boundaries of 1D sets. Thus, to perform the complete boundary
evaluation requires that we apply our algorithm recursively in dimen-
sion. The recursion forms 1D BSP trees for each internal node of a
2D BSP tree. The in-cells of these trees lie on polygon edges. In this
I D-space, hypcrplanes are forced to the form [1 - x]. Vertices lie
on these hyperplanes and have value x , and the left subtree of a node
contains values < x while the right subtree values are > x , i.e. they
are binary search trees. To find the minimum boundary of these 1D
in-regions, i.e. the pairs of vertices bounding each edge, we can
traverse each 1D tree using the procedure in Figure G E N E R A T E -
EDGES. The vertices are projected back from tD to 2D which are
then projected back into H defined in 3D. This then produces a
merged set of edges bounding the on-regions (with respect to the 3D
polyhedron) lying in a given sub-hyperplane 4.

Global variables
vl ,v2 : scalar, last value : { in,out } : . - out
edge_list : LIST OF (vl,v2)

G e n e r a t e E d g e s (root, [1 - - o o l)

procedure Generate_Edges(v : BSPTreeNode ,
rain : 1D-Hyperplane)

i f v = leaf then
case (last_value, v.value)

(out,in) - > v l :ffi min.x
(in,out) - > v2 :ffi min.x

edge_list + ffi NewEdge (v l , v2)
last value : - v.value

else
Generate_Edges(v.left, min)
Generate_Edges(v.right, Hv)

end Generate_Edges

Figure G E N E R A T E - E D G E S

Another alternative for boundary generation from the CSG evalnator,
described in [Thib87], uses a technique where each same-face is
inserted into v.left and a copy, but with orientation reversed, is inserted
into v.right. The complementary operation is performed for the
opposite-faces. The resulting in-cell faces are retained and merged
together as above, but with the following "glue" operator in place of
union:

(same, same) - > same
(same, opposite) - > not-on
(opposite, s a m e) - > not-on
(opposite, opposite) - > opposite

The I D boundaries of same and opposite regions are constructed
independently. This kind of operation has appeared elsewhere, e.g.

4. R e p r e s e m i n g a set of a rb i t r a ry non-over lapping polygons by a set of edges is
sufficient for m a n y polygon process ing a lgor i thms .

[Putn86], to "regularize" the set,

4.4 BSP Tree Reduction

Once a BSP tree has been constructed as the result of the evaluation of
set operations, it may be possible to reduce the tree by eliminating cer-
tain nodes without changing the represented set. We identify two
cases in which this reduction is possible. The first case occurs when
both subtrees of a node v are cells with identical values (Node z in
Figure REDUCE), Since R (v) is homogeneous, the subtree rooted at
v can be replaced by a cell with the same vatue. Note that no boun-
dary faces could lie in the sub-hyperplane of such a node, This case
arises naturally from expression simplification during which a formerly
non-homogeneous region is simplified to a homogeneous one, and is
analogous to the "condensation" of quad/oct-trees. It can be performed
as part of the tree construction.

We may also remove a node that has as one child a cell and, in addi-
tion, has no part of the boundary in its sub-hyperplane (node u in Fig-
ure REDUCE). This means that all cells in the other subtree bounded
by this node's hyperplane have the same value as the cell. Since the
sub-hyperplane does not contribute to the differentiation of space, the
tree rooted at this node can be replaced by the node's non-trivial sub-
tree (Node w). This reduction can be performed during the phase that
generates the boundary faces. (With the incremental algorithm, this
can be detected and effected during set-op evaluation.)

u

w out
/ \

U x o u t
/ \

out
\ \

Z o u t
. / \
In In

Figure R E D U C E . Nodes u and z can be eliminated.

4.5 The In/Out Test

In all three of our algorithms that produce BSP tree representations of
polyhedra, we discover regions that do not contain any faces of a
polyhedron B represented by a B-rep B. In these cases, we must
determine whether that region lies in int B or ext B. In procedure
Build_BSP, we saw that we could use the normal of a face, coincident
with H , to answer this question. However, in the set operation algo-
rithms, no such face may exist. We must then decide the status of this
region based upon the subset of bd B lying on the non-homogeneous
side of H . We solve this for dimensions 1, 2 and 3.

Let By = / ~ f') R (v) . (Note that since R (v) is open,
0 bd R (v) is not included in By). We assume, without loss of

generality, that B~ lies entirely in H~ +, and therefore in R(v.right).
We are then interested in determining the status of R (v.left) with
respect to B. In the case where B O R (v) is convex, this is rela-
tively simple. We can test some point lying in SHp (v) for inclusion in
the back half-spaces of all faces o f / ~ . If the point is "behind" all of
these faces, then R (v.left) C int B, otherwise R(v. lef t) c ext B.
Such a point can be easily produced if each sub-hyperplane embeds
some face: we use the centroid of three non-collinear vertices of this
face.

We now address the problem for (sets of) arbitrary polyhedra. One
alternative is the ray casting test [Laid86]. This method would inter-
sect a ray emanating from a point.on the sub-hyperplane with /~ to
find the closest face, from whose orientation the classification can be
obtained. If the closest intersection point lies on more than one face,
the process is repeated with a randomly perturbed ray. We have,

159

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

however, discovered a simpler method which uses the closest vertex b
of/Y~, to H. This b can be found trivially during the partitioning of
/Y~ by Hr. In the following, le tp be a point in S H p (v) .

In ID, the problem is solved exactly as in Build-BSPT, i.e from the
orientation of the single face (a point). For 2D, the problem is illus-
trated in Figure 2D-IN/OUT. Vertex b is either in bd R (v) or in
int R (v) . If b lies in b d R (v) , then there is a single edge e in Bv
incident with b. (A second edge could only lie in b d R (v) or
ext R (v)) . I f p lies in He +, then R(v.left) lies in ext B. Otherwise,
R(v.left) is in int B. Now, if b is in int R (v) , b is incident with two
edges, el and e2. The region R(v.left) is in ext B if el and e2 lie in
each other's back halfspace, i.e., if el c H~- and e2 C HeT. This

means that b is a point of "local convexity" of B. Otherwise R (v.left)
is in int B (and b is a point of "local concavity").

t P "

~ L %"i 3/
t_ " "R(v)

(a) closest vertex in bdR (v).

t t " i

t t / /

", L ~ 2)'

', ."Riv,
(b) closest vertex in 'int'R (v).

Figure 2D-IN/OUT.

In 3D, the situation is somewhat similar: either b lies in bd R (v) and
is not shared by any other face o f / ~ , or b is shared by more than one
face o f / ~ (and may lie in either bd R (v) or int R (v)). The test for
the first case is the same as above: p is tested against the hyperplane
of the single face containing b. When b is shared by more than one
face of/~v, we select the edge which forms the smallest angle with the
plane H~ (think of b lying on H~), In the neighborhood of b, this is
the closest edge o f / ~ to H~ (Figure 3D-IN/OUT). If f l and f 2 are
the faces that share this edge, then R (v.left) is in ext B if, in a local
region of b, f l and f 2 lie in each other's back halfspace; otherwise,
R (v.left) lies in int B. To determine this we first find a vertex of f l
adjacent (connected by an edge) to b but not lying in fz- The loca-
tion with respect to the plane of f 2 of this vertex provides the same
answer as in the 2D case above. If the faces are convex, any vertex of
f l not lying in f 2 will do. If there is a tie for the closest vertex, we
can choose the one that allows the simplest test.

~ - - - ~ . ~ - ~ - 1 = - 2 - - - ~ - ~ - - - ~ ~ - I

'
I I I I t I I

' ' I I ' '
I I I I I I
q I I I I
I I I I I
I I I I I I

I I I I I

- ~ --+-) ~- fl .,t-[_ -/L L : .)

_ _ . ~ _ _ _ _ ' _ J / _ _ - . ~.-- _W___:"

(a) vertex b on only one face. (b) vertex b on more than one face.

Figure 3D-IN/OUT.

5. Experience

5.1 Selection of Partitioning Hyperplanes

While a thorough discussion of methods by which to select partitioning
hyperplanes is beyond the scope of this paper, we will at least describe
the primary ones we have been using. The two principal properties of
BSP trees that we are wanting to optimize are size and balance.

Because finding the optimal is considered to be computationally hard,
heuristics are employed. Most of our work has been with heuristics
that select a hyperplane from among those that embed faces. For a set
of faces, we define the candidate set to be those faces that are to be
considered for generating partitioning hyperplanes. The test set con-
sists of the faces against which each candidate hyperplane is tested,
with possible outcomes being "in front oP', "in back of", and "inter-
sected by". The heuristic is a function of the number of outcomes of
each type that occurred when a candidate was tested against the test
set. The candidate chosen is that member of the candidate set that
maximizes the heuristic. We investigated three heuristic functions:

Heurl (front,back,split) ~ (-] b a c k - f r o n t [) -w~gi t * split
Heur2 (front,back,split) - (front * back) - wspm * split
Heur 3 (front,back,split) ~ front - w~ptit * split

The weight wsptit allows "tuning" of the heuristics. The reason for
applying a negative weight to intersected candidates is that splitting of
faces tends to increase tree size and total computation time. The first
two heuristics try to balance the number of faces on each side of the
candidate. The third is motivated by CSG trees with convex primitives
and attempts to maximize the number of faces in the exterior of some
primitive. This can facilitate CSG tree simplification, since in one of
the two subspaces, the value of the primitive will be out.

5.2 Implementation of the CSG evaluation algorithm

The CSG evaluation algorithm has been implemented in a dialect of
Pascal running under Unix BSD 4.3. The CSG tree is described in a
simple language of our design, translated using lex and yacc. Statis-
tics obtained for various test objects are given in Figure STATS.
Objects "stand" and "holed head" are depicted in Figure RAY-
TRACING. In Figure CLUTCHPLATE, the edges (highlighted)
reveal the spatial partitioning of that object. Tests were run on a
VAX 8650. For each heuristic, wwm -- 8, the candidate set consisted
of 5 polygons chosen at random from each primitive in the current
sub-problem, and the test set consisted of all polygons in the sub-
problem. Early experience with various candidate set sizes shows that
heuristics Heurl and Heur3 are comparable. Heur2 produces trees
with a larger number of nodes, but with less CPU time than is
required by the other heuristics for the same objects.

5.3 Implementation of the Incremental Algorithm

We have implemented the algorithm for incremental set operations in
C on a Silicon Graphics IRIS workstation. The user modifies a "work
piece", represented by a BSP tree, with a "tool", represented by a B-
rep. The user can interactively control the view and the tool's position.
Moving the tool results in a temporary union of the current work piece
with the tool at its current position. Visibility is accomplished by
transmitting the polygons in back to front order, using the visibility
priority ordering produced from the BSP tree. The union we use for
this is a "lazy" union because we do not re-evaluate boundary polygons
in nodes of the resulting tree. We can do this because the visible sur-
face of two objects that interpenetrate is the same as the visible sur-
face of their union. Re-evaluation would only serve to eliminate invisi-
ble faces in the interior or overlapping faces on the boundary. Our
impression is that the time required to draw the extra polygons is less
than that needed to update the boundaries. In addition, subtrees lying
inside the tool are saved and former cells that were refined by the
tool's faces are noted. Thus to restore the original tree for use in the
next frame requires reinstating the "removed" subtrees and cells, and
removing any of the tool's faces lying in internal nodes of the tree.
Finally, once the tool is positioned, the user chooses a set operation and
the BSP tree is modified to reflect the result.

The initial work piece is obtained by either converting some B-rep to a
BSP tree or using the result of the CSG evaluator. We have restricted
the tools to be convex polyhedra so that we can take advantage of the

160

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

number of number of heuristic cpu tree size tree height number of
object primitives polygons used (seconds) (nodes) polygons

1 8.3 368 43 353
clutchplate 8 158 2 7.2 408 27 362

3 8.3 369 47 353
1 41.9 713 31 1781

stand 31 623 2 41.1 814 31 1825
3 152.9 896 93 1850
1 30.6 1536 104 1982

holed head 3 955 2 24,5 1811 61 2167
3 32.8 1532 90 2067

Figure STATS. Statistics for some test cases.

simpler algorithms for tree building and in/out testing. We have not
found this to be an unnatural limitation for the user. Also, the IRIS
workstation requires polygons to be convex. In forming the' boundary
during set operations, we take advantage of the convex decomposition
generated by the BSP tree to provide us with convex polygons.

6. Concluding C o m m e n t s

6.1 Comparison to Alternative Approaches

Space limitations prevent any but a limited discussion of the relation-
ship of our work to others. The octree [Meag82] is similar in ways to
the BSP tree. Both are tree structures that recursively subdivides
space and assigns values to leaves, and both are dimension-
independent. The most obvious difference is that octrees require the
partitioning to be axis-aligned and the subdivision to be uniform. Of
course, any partitioning of space by an octree can be modeled by a
BSP tree 5. The simplicity of octrees is attractive, and this can lead to
certain advantages. But, for representation of polyhedra, the octree in
general provides only an approximation, and it is typically a very ver-
bose one. However, work described in [Carl85] [Aya185] attempts to
addresses these problems. While the verbosity is reduced, it still
remains a problem. Set operations (in [Aya185] and described for 2D
only) require identifying and handling a number of cases, an aspect
that tends to complicate implementations and makes extension to
higher dimensions difficult. More importantly, axis-aligned partition-
ing schemes do not transform. To transform an octree it must be
rebuilt. BSP trees do transform: simply apply the transformation to
each hyperplane (the inverse of what would be applied to points).
Also, we expect the generality of orientation to lead to smaller
representations.

In B-rep algorithms, e.g. [Mant83] [Requ85] [Laid861 [Putn861, the
geometric search structure, the set operations, and the visible surface
determination are independent. In the BSP tree, they are all unified in
a single structure (also true of octrees). While boundary representa-
tions transform, the search structures are typically axis-aligned. With
one exception [Putn86], the algorithms for set operations are not
dimension-independent and are somewhat complex with, once again,
considerable case analysis. The principal "case analysis" per se for the
BSP tree is the partitioning of a face by a hyperplane. On the other
hand, B-reps are typically more concise (although not always).

6.2 Future Work

Other operations that we have examined include the calculation of
metric properties such as volume, surface area, center of mass, etc.
(see [Thib87]). We have also made a potentially important step by

5. To make the cost of determining the location of a point in a BSP tree more
comparable to an octree, we use plane-equation-type -- (x-axis, y-axis, z-axis,
arbitrary) and optimize when not "arbitrary".

devising a closed set theoretic (boolean) algebra on BSP trees, thus
dispensing with B-reps per se. In addition, the original ray-tracing
techniques have been extended considerably, now exploiting non-linear
hyperplanes, Utilization of non-linear hyperplanes is also possible with
the fundamental techniques presented in this paper. However, the sim-
plicity of linear computations would be lost in doing so. Nonetheless,
we intend to explore this option. Heuristics are another area requiring
greater study. All partitioning hyperplanes do not need to embed
faces. One technique we have begun investigating is the use of a
"median cut" algorithm similar to that used to build k-d trees [Bent79].
This can result in more well-balanced trees, especially for convex
regions bounded by many faces.

6.3 Conclusions

A new representation for something as fundamental as polyhedra intro-
duces a new "algorithm space" to explore. Divide-and-conquer algo-
rithms are often simple and efficient and we believe this is reflected in
the BSP tree algorithms. Also, the dimension independent aspect
allowed a solution to the boundary problem without introducing a
different methodology. The unified framework provided for geometric
searching, set operations, and visible surface rendering reduces the con-
ceptual complexity as well as the complexity of implementations.

The representation can be viewed as something of a cross between
octrees and boundary representations, it has the unifying quality of
octrees, but is not as simple. It has the exactness, transformability and
conciseness of boundary representations, although not generally as

concise. In fact, one might view the greater verbosity as the cost of
the unity, something which must be weighed against the other gains.

References

[Aya185] D. Ayala, P. Brunet, R. Juan, and 1, Navazo, "Object
Representation by Means of Nonminimal Division Quad trees
and Octrees," ACM Transactions on Graphics Vol. 4(1) pp.
41-59 (January 1985).

[Bent79] Jon Louis Bentley and Jerome H. Friedman, "Data Struc-
tures for Range Searching," Computing Surveys Vol. 11(4), pp.
397-409 (December 1979).

[Carl85] Ingrid Carlbom, Indranil Chakravarty, and David Vander-
schel, "A Hierarchical Data Structure for Representing the Spatial
Decomposition of 3-D Objects," 1EEE Computer Graphics and
Applications, pp. 24-31 (April 1985).

[FuchS0] H. Fuchs, Z. Kedem, and B. Naylor, "On Visible Surface
Generation by a Priori Tree Structures," Computer Graphics
1Iol. 14(3), (June 1980).

[Fuch83] Henry Fuchs, Gregory D. Abram, and Eric D. Grant, "Near
Real-Time Shaded Display of Rigid Objects," Computer Graph-
ics VoL 17(3) pp. 65-72 (July 1983).

[Kala82] Yehuda E. Kalay, "Determining.the Spatial Containment of

161

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

a Point in General Polyhedra," Computer Graphics and Image Pro-
cessing Vol. 19 pp. 303-334 (1982).

[Laid86] David H. Laidlaw, W. Benjamin Trumbore, and John F.
Hughes, "Constructive Solid Geometry for Polyhedral Objects,"
Computer Graphics Vol. 20(4)pp. 161-170 (August 1986).

[Mant83] Martii Mantyla and Markku Tamminen, "Localized Set
Operations for Solid Modeling," Computer Graphics I/ol. 17(3)
pp. 279-288 (July 1983).

[Meag82] D. Meagher, "Geometric Modeling using Octree Encoding,"
Computer Graphics and Image Processing 1Iol. 19(June 1982).

[Nayl81] Bruce F. Naylor, "A Priori Based Techniques for Determin-
ing Visibility Priority for 3-D Scenes," Ph.D. Thesis, Univer-
sity of Texas at Dallas (May 1981).

[Nay186] Bruce F. Naylor and William C. Thibault, "Application of
BSP Trees to Ray-Tracing and CSG Evaluation," Technical Report
GIT-ICS 86/03, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, Georgia 30332 (Febru-
ary 1986).

[Prep85] Franco P. Preparata and Michael ion Shamos,
Computational Geometry: An Introduction, Springer-Verlag, New

York (1985).

[Putn86] L. K. Putnam and P. A. Subrahmanyam, "Boolean Opera-
tions on n-Dimensional Objects," IEEE Computer Graphics and
Applications, pp. 43-51 (June 1986).

[Requ78] Aristides A. G. Requicha and Robert B. Tilove,
"Mathematical Foundations of Constructive Solid Geometry:
General Topology of Closed Regular Sets," TM-27a, Produc-
tion Automation Project, University of Rochester, Rochester, New
York 14627 (June 1978).

[Requ80] Aristides A. G. Requicha, "Representations for Rigid
Solids: Theory, Methods, and Systems," Computing Surveys 1Iol.
12(4) pp. 437-464 (December 1980).

[Requ85] Aristides A. G. Requicha and Herbert B. Voelcker,
"Boolean Operations in Solid Modeling: Boundary Evaluation and
Merging Algorithms," Proceedings of the IEEE Vol. 73(1) pp.
30-44 (January 1985).

[Roth82] Scott D. Roth, "Ray Casting for Modeling Solids," Computer
Graphics and Image Processing Vol. 18 pp. 109-144 (1982).

[Schu69] R. A. Schumacker, R. Brand, M. Giltitand, and W. Sharp,
"Study for Applying Computer-Generated Images to Visual Simu-
lation," AFHRL-TR-69-14, U.S. Air Force Human Resources
Laboratory (t969).

[Thib87| William C. Thibault, "Application of Binary Space Partition-
ing Trees to Geometric Modeling and Ray-Tracing", Ph.D. Disser-
tation, Georgia Institute of Technology, Atlanta, Georgia, (1987).

[Tilo80] Robert B. Tilove, "Set Membership Classification: A
Unified Approach to Geometric Intersection Problems," IEEE
Transactions on Computers VoL C-2900) pp. 874-883 (October
1980).

[Tilo84] Robert Tilove, "A Null-Object Algorithm for Constructive
Solid Geometry," Communications of the ACM Vol. 27(7) (July
1984).

[Wood82] J. R. Woodwark and K. M. Quinlan, "Reducing the effect
of complexity on volume model evaluation," Computer Aided
Design Vol. 14(2) (1982).

Figure RAY-TRACING. Two objects defined with BSP trees and ren-
dered by ray-tracing.

Figure CLUTCHPLATE. Edges reveal the partitioning.

162

