A Global Illumination Ray-Tracer

being a dissertation submitted in partial fulfilment of
the requirements for the Degree of Master of Science
in the University of Hull

by

Ioannis Tsiompikas
BSc (Hons) Computer Science, University of Sheffield

September 2009

Abstract

Rendering photorealistic images of 3D environments such as the ones used
in computer graphics films, special effects and architectural visualization,
requires algorithms capable of accurately simulating the flow of light in a
virtual environment.

Global illumination is a particularly important, but problematic aspect
of lighting in a 3D environment, as most conventional rendering algorithms
are incapable of taking into account the contribution of light arriving at any
given point from nearby surfaces, as opposed to light coming directly from
the light source.

The renderer presented here uses the photon mapping algorithm in order
to simulate the two most difficult to capture effects of global illumination:
light being focused by specular objects such as curved mirrors and lenses
(caustics), and diffuse interreflections, that is, light arriving to illuminate a
surface after being diffusely scattered by another lambertian surface.

Contents

1 Introduction

1.1 Project Objectives
2 Background
2.1 Light Path Notation
2.2 Radiance and Irradiance
2.3 Rendering Algorithms
231 RayCasting
2.3.2 Whitted Ray Tracing
2.3.3 Distribution Ray Tracing
234 Radiosityo
2.3.5 The Rendering Equation
2.3.6 Photon Mapping
2.4 Reflectance Models
2.4.1 Phong/Blinn Model
2.4.2 Cook and Torrance
24.3 Orenand Nayar
2.4.4 Schlick’s Model
3 Design
3.1 Choice of Algorithm
3.2 Target Platform
3.3 Code Organization
3.3.1 Dependencies
3.4 Flexible Materials
3.5 Parallelism
3.6 Ray Intersection Acceleration
3.7 Scene Description Format
3.7.1 Overview of the Scene Input Format
3.8 Scene Previewer Lo
3.9 User Interface

CONTENTS

4 Implementation

4.1 Rendering Process Overview
4.2 Rendering Window
4.3 Thread Poolo
4.4 Caching and Lazy Evaluation
4.4.1 Animation
4.4.2 Bounding Box Determination
4.4.3 DataCache and Multithreading
4.4.4 Adaptive Multisampling
4.5 Photon Mapping
4.5.1 Photon Map Data Structure
4.5.2 Photon Shooting
4.5.3 Photon Tracing
454 Caustics
4.5.5 Diffuse Global Illumination

Results

5.1 Whitted Ray Tracing
5.2 Animation and Motion Blur
5.3 Caustics
5.4 Diffuse Global Illumination

Conclusions and Critical Analysis

6.1 Limitations
6.1.1 Irradiance Caching
6.1.2 Importance Sampling using the Photon Map
6.1.3 Photon Filtering

6.2 Future Work

28
28
29
29
30
30
30
31
31
31
32
33
34
35
36

38
38
38
40
42

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
9.3
5.4
2.5
0.6
2.7
0.8

Whitted ray tracingo 9
Motion blur through distribution ray tracing 10
Diffuse interreflections with the radiosity algorithm 11
Caustics through photon mapping 13
Lafortune’s Phong BRDF sampling 14
Copper vase rendered using the Cook-Torrance BRDF 14
Scene octree visualization L. 21
Mesh octree visualization 21
Interactive OpenGL scene previewer. 25
Photon visualization in the scene previewer. 26
Sampling histogram visualization 32
Projection map visualization 34
Initial attempt at global diffuse illumination by directly esti-

mating radiance from the global photon map 37
Comparison between s-ray and the 3D studio ray tracer 39
Motion blur 40
Refractive Caustics 41
Caustics due to reflection off a copper ring 41
Caustics due to light transmitted through a glass stanford bunny 42

Color bleeding due to diffuse interreflections in the Cornell box. 43
Global illumination rendering of a complex environment . . . 44
Direct illumination rendering for comparison 45

Chapter 1

Introduction

From the inception of computer graphics, back in the days of hidden line
algorithms on vector displays, one of the biggest driving motives in the de-
velopment of computer graphics algorithms has been the quest to reach the
elusive goal of photorealism.

There are many applications which require the use of photorealistic ren-
dering algorithms. Films and advertisments use photorealistic computer
graphics to seamlessly integrate artificial characters alongside real actors,
or are completely rendered by such algorithms. Products can be visualized
using photorealistic graphics to see how they will look like before being put
into production. Interiors can be visualized under various lighting conditions
to find the best type of lighting and optimal placement of light sources.

All of the aforementioned applications have one thing in common: ren-
dering time can be sacrificed in order to achieve the best possible rendering
quality, which makes the ray tracing rendering algorithm the prime choice
for such applications.

The ray tracing rendering algorithm is almost ubiquitous in off-line photo-
realistic renderers. Even though it’s inherently much more computationally
expensive than polygon filling techniques, the range of effects one can achieve
with ray tracing makes it the algorithm of choice when image quality is at a
premium, and execution time can be sacrificed to achieve the highest possible
degree of photorealism.

The basic ray tracing algorithm is quite capable of simulating a wide
range of phenomena which are hard or impossible to achieve with polygon
fillers. Such effects as accurate reflections, refractions and shadows are trivial
to implement with a ray tracer, but are considerably difficult to approximate
with polygon filling or scanline rendering.

Moreover, the algorithm is simple to implement, more intuitive, and very
elegant, requiring on the basic level only the ability to find intersections be-

CHAPTER 1. INTRODUCTION >

tween rays and surfaces, which is then used for almost everything, throughout
the whole rendering process.

However, there are some effects, which cannot be simulated by the basic
ray tracing algorithm. The following are some of the phenomenae that cannot
be captured by a basic ray tracer:

e Imperfect (glossy) reflection and refraction due to irregularities on the
surface of specular objects.

e Shadows with penumbra regions (soft shadows), which is caused by
partial occlusion of light sources with non-zero area.

e Motion blur, produced when fast-moving objects are photographed by
a camera with finite shutter speed.

e Depth of field. That is, limited focal range of the camera resulting in
out of focus areas in the rendered image.

e light arriving to a surface after being scattered by diffuse surfaces (in-
direct diffuse illumination).

e light arriving to a surface after being reflected or refracted by specular
surfaces (caustics).

These deficiencies can be addressed by extending the ray tracing algo-
rithm to use monte carlo integration as described by Cook et al.[1], Kajiya[2],
and Jensen[3].

1.1 Project Objectives

As implied by its title, the main objective of this project, is to implement
a ray tracer capable of simulating global illumination and, particularly, the
rather hard to capture effects of diffuse interreflection, and caustics.

Diffuse interreflections are particularly important for photorealistic ren-
dering. Especially in renderings of interiors, where the total illumination is
commonly dominated by light arriving indirectly through windows or “hid-
den” lights.

Caustics are also an important element of a photorealistic image. Trans-
parent objects would cast a solid black shadow in the absence of caustics,
which looks totally unrealistic. We expect to see the light being focused by
a glass of whisky on the table, or the shimmering light at the bottom of a
swimming pool, and those environments would look fake in the absence of
caustics.

CHAPTER 1. INTRODUCTION 6

In addition to indirect diffuse illumination and caustics, all effects pre-
viously described as falling into the domain of monte carlo ray tracing are
also implemented for completeness and out of the desire to produce a useful
renderer, as opposed to merely a toy program demonstrating only a narrow
aspect of photorealistic rendering.

For the same reason, an effort has been made to make the renderer rea-
sonably fast without however expending a great effort in optimizations since
this wasn’t a primary objective of the project. Naive algorithms have been
avoided, and efficient data structures have been chosen to make the renderer
run fast enough to be generally useful.

One way to speed up the rendering would be to take advantage of the
highly-parallel special-purpose graphics processing units which have become
a comodity in modern computers. However, a GPU implementation would
have to deviate a lot from the pure CPU-based algorithms due to quirks of the
GPU programming model. Such a deviation would complicate the program
considerably, and distract from the stated goal which is the implementation
of global illumination algorithms, and particularly “photon mapping”. In
fact, the application of these algorithms in the context of a GPU is an open
research topic at the moment, and thus can hardly be treated as an imple-
mentation detail of a project which doesn’t have that as its explicit goal.

The renderer is called /Tay, or “s-ray” where it is inconvenient to use

the integral symbol. The name is made up by concatenation of the inte-
gral symbol, which alludes to the prominent use of monte carlo integration
throughout the renderer, followed by the customary in ray tracers, “-ray”
suffix.

In the following chapters, after a quick overview of the most important
algorithms in the field of photorealistic rendering, which constitute the foun-
dations onto which the s-ray renderer is built, the design and implementation
of the renderer will be discussed in detail, including an in-depth explanation
of the key algorithms used. Finally results will be presented, followed by a
critical examination of the strengths and shortcomings of the s-ray renderer.

Chapter 2

Background

From the first computer line drawings of Ivan Sutherland to the vivid photo-
realistic renderings of today, a huge amount of effort has been expended to
come up with algorithms that capture various properties of the interaction
of light with the environment.

2.1 Light Path Notation

When discussing the various possible interactions of light with the environ-
ment, it is convenient to have a notation which describes particular light
paths, or particular classes of light paths concisely. Such a notation was
proposed by Paul Heckbert[4].

Heckbert’s light path notation uses a set of symbols: {L,S, D, FE} as
its alphabet, which stand for light, specular interaction, diffuse interaction,
and eye respectively. By combining these symbols to form strings, always
starting with L and terminating in E, one is able to describe any path of
light starting from a light source and reaching the viewer. For instance, light
hitting a diffuse sphere, and seen through the mirror would correspond to
an LDSE path, while a caustic formed on a diffuse surface by light being
transmitted through a lens would be an LSDE path.

Heckbert also proposed the use of regular expressions, to describe classes
of possible light paths. For instance, a simple ray tracer which can simulate
at most one diffuse reflection, followed by an number ofspecular interactions
along the path of light, before arriving to the observer, is able to simulate
LD7S*E paths. In comparison, the full set of light paths simulated by global
illumination algorithms fall into the L(D|S)*E class.

CHAPTER 2. BACKGROUND 8

2.2 Radiance and Irradiance

Two important terms in the discussion of light which shall be needed later
on, are radiance, and irradiance. Irradiance is the amount of radiant energy,
i.e. the amount of light, that arrives at a particular point on a surface per
unit time (dt). Radiance on the other hand, is the amount of light leaving
the surface towards a particular direction.

2.3 Rendering Algorithms

Next, we shall see an overview of the most important milestones in the de-
velopment of photorealistic rendering algorithms, with particular emphasis
to those algorithms which are most relevant to this project.

2.3.1 Ray Casting

In 1968, the fundamendal algorithm of ray-casting was introduced by Arthur
Appel, in his paper: “Some Techniques for Shading Machine Renderings of
Solids” [5].

Ray-casting works by “shooting” rays from the viewer through each pixel
of the image plane, and calculating where is the nearest intersection, if any,
of the ray with the objects in the scene. At the point of the nearest intersec-
tion, a new ray (called a “shadow ray”) is cast towards the light source to
determine if there are any objects obstructing the path between that point
and the light source. If no intersections are found by the shadow ray, then
the point is not in shadow, and lighting calculations are carried out to com-
pute a color for that pixel. If multiple light sources are used, then lighting is
accumulated for each non-obstructed light source and the sum is used as the
pixel color.

2.3.2 Whitted Ray Tracing

One of the biggest early breakthroughs in photorealistic rendering was the
introduction of recursive ray tracing by Turner Whitted [6].

Whitted solved the problem of simulating reflection and refraction in a
simple and elegant manner, by performing ray casting recursively when a ray
intersects reflective or transparent surfaces.

When a ray hits a reflective surface, a secondary reflection ray is spawned
at that point and cast recursively towards the reflection direction. Similarly,

CHAPTER 2. BACKGROUND 9

Figure 2.1: Reflection and refraction through recursive ray tracing. Turner
Whitted.[6]

intersections with transparent objects result in secondary rays being trans-
mitted through the object towards the refraction direction. Illumination
collected by secondary rays are added to the direct illumination, weighted by
the reflectivity or transparency of the object accordingly.

Ray tracing is in fact a global illumination algorithm, since it takes into
account light arriving at perfect specular surfaces from other parts of the
scene. It is not usually referred as such however, due to the very limited range
of light paths it can simulate. In fact as was already mentioned, Whitted ray
tracing is able to simulate LD?S*E paths in Heckbert’s notation.

2.3.3 Distribution Ray Tracing

One failing of the simple ray tracing algorithm as presented by Whitted, is
that the images it produces are artificially perfect. Every reflective surface
is a perfect mirror, every transparent object is crystal-clear, etc.

The solution to that problem was given by Cook et al. by the introduc-
tion of a technique called distribution ray tracing,[1] which uses monte carlo
integration to produce glossy reflections and refraction, penumbra shadows,
motion blur, and depth of field.

CHAPTER 2. BACKGROUND 10

Figure 2.2: Motion blur through distribution ray tracing. Cook et al.[1]

All these effects are implemented by random (monte carlo) sampling at
various rendering stages. For instance, glossy reflections are simulated by
spawning a bunch of secondary reflection rays, randomly distributed around
the perfect reflection direction, whilst motion blur is simulated by temporal
distribution of rays around the frame time, in the interval dictated by the
shutter speed.

2.3.4 Radiosity

The radiosity algorithm [7, 8] takes photorealistic rendering one step further
by being able to simulate diffuse interreflections between objects, which is
generally what is referred to by the term “global illumination”.

Radiosity is an adaptation to graphics, of a finite element technique used
in calculating thermal transport [9]. It works by breaking up the scene into a
number of “patches” each of which acts as a lambertian reflector, gathering
energy from all patches in the hemisphere above its surface, and reflecting a
part of it back out towards all directions. Running a lot of iterations of going
arround each patch and gathering energy from visible patches, eventually
converges to a good approximation of the distribution of light in the scene.

CHAPTER 2. BACKGROUND 11

Figure 2.3: Diffuse interreflections simulated with the radiosity algorithm.
Cohen et al.[§]

In light path notation, a radiosity renderer is capable of simulating only
LD#E paths.

2.3.5 The Rendering Equation

James Kajiya published in 1986 his seminal paper “The Rendering Equa-
tion”, which unified all rendering algorithms by showing that they are all in
fact approximations to the solution of a single rendering equation. [2]

I(z,2") = g(x,2) [e(x,x') + /S,O(x,x',x”) I(2',2") da"

He also introduced path tracing; a ray tracing algorithm which uses monte
carlo integration to completely solve the rendering equation. Although quite
inefficient, path tracing is indeed capable of simulating all possible light paths
in a 3D environment (L(D|S)*E paths), including difficult to capture effects
such as diffuse interreflection and caustics.

CHAPTER 2. BACKGROUND 12

Path tracing works by shooting a lot of rays for each pixel of the image,
and then following each of those rays as it interacts with the environment.
Each ray follows just a single path, so for instance if a ray hits a reflective and
refractive surface, only one of those directions will be followed randomly using
the reflectivity and transmission coefficents of the material as a probability
density function. In case a ray hits a diffuse surface, a random direction on
the hemisphere above the intersection point is picked and followed.

It is natural that all this randomness results in a lot of noise in the
generated picture, however by averaging the results of many paths per pixel
the image slowly converges to an accurate solution of the rendering equation.

2.3.6 Photon Mapping

Finally, in 1995, Henrik Wann Jensen described a technique called photon
mapping, an efficent and accurate algorithm for computing global illumina-
tion and caustics[3]. A considerable advantage of photon mapping over the
radiosity algorithm is that illumination calculations are doucoupled from the
underlying geometry of the scene, and also it can easily be added on top of
an existing monte carlo ray tracer without much added complexity.

The photon mapping algorithm is split into two distinct phases. First
photons are traced from the light sources as they interact with the various
objects in the scene, and are finally stored in a spatial data structure called
a photon map when they are absorbed. Then, during ray tracing, the photon
map can be used to provide radiance estimates and importance sampling
information, needed for computing global illumination and caustics effects.

The photon mapping algorithm will be explained in greater detail in sub-
sequent chapters, as it forms the basis for this project.

2.4 Reflectance Models

Reflectance models, are models describing the behaviour of light when it
interacts with a surface. Traditionally, reflectance models (or illumination
models), are used to calculate radiance leaving the surface towards the view
point, i.e. the intensity and color of light reflected off a surface at a specific
point towards the viewer.

The reflectance function, also called BRDF for Bi-directional Reflectance
Distribution Function, provides a measure of reflected radiance towards a
specific direction, based on the direction of incident light, and properties of
the surface.

CHAPTER 2. BACKGROUND 13

Figure 2.4: Caustics can be simulated easily by the photon mapping algo-
rithm. Henrik Wann Jensen|3]

2.4.1 Phong/Blinn Model

In 1973 Bui Tuong Phong presented an empirical model for specular reflec-
tion [10] that closely matches the appearence of imperfect shiny surfaces.
This model although not physically accurate, still enjoys a lot of popularity,
expecially in real-time graphics applications. Actually, the most popular ver-
sion of this reflectance model, is a slightly simplified form introduced by Jim
Blinn [11]. The model owes its popularity to its simplicity, and mostly to the
ability to be calulated very rapidly, which is essential for real-time graphics
programs.

Lafortune et al. presented a way to generate random samples on the
phong specular lobe[12] which can be used to importance sample the phong
BRDF in monte carlo ray tracers.

2.4.2 Cook and Torrance

Torrance and Cook [13] in 1981, presented a physically accurate reflectance
model which is particularly suited for metallic surfaces, which the phong

CHAPTER 2. BACKGROUND 14

Figure 2.5: Importance sampling the Phong BRDF using Lafortune’s algo-
rithm. Output of a test program written during the course of this project.

Figure 2.6: Copper vase rendered using the Cook-Torrance BRDF. Cook and
Torrance[13]

CHAPTER 2. BACKGROUND 15

model does not handle very well. The Cook-Torrance model is based on a
statistical distribution of hypothetical microfacets on the surface, and take
into consideration Fresnel’s law to calculate the intensity and wavelength of
the reflected light in respect to its angle with the surface normal.

2.4.3 Oren and Nayar

In their paper “Generalization of Lambert’s Reflectance Model”[14], Oren
and Nayar introduced an accurate model for lambertian reflectors, which
takes into account retro-reflection in rough clay-like diffuse surfaces.

2.4.4 Schlick’s Model

A relatively simple but physically plausible, empirical reflectance model was
introduced in 1993 by Christophe Schilck [15]. Its advantages are the high de-
gree of parametrization with an intuitive set of parameters, and the fact that
it’s computationally cheaper, than full physically based reflectance models,
while still obeying physical laws such as conservation of energy. Additionally
most terms of the reflectance function can be importance sampled.

Chapter 3

Design

In this chapter we shall discuss the design of the s-ray renderer, and present
the rationale behind the most important design decisions taken during the
course of its development.

3.1 Choice of Algorithm

The photon mapping algorithm was chosen to implement global illumination.

The only practical alternative that could have been chosen instead is the
radiosity algorithm. Radiosity, as was explained previously in the background
chapter, is perfectly capable of calculating diffuse interreflections, but it lacks
support for specular interactions, such as caustics.

It is possible to use ray tracing in conjunction with radiosity to add
limited support for specular interactions to the radiosity algorithm, which
is otherwise incapable to take them into account. First a radiosity solution
is computed for the scene, storing direct and indirect diffuse illumination
in the surface patches. Then a ray tracer can be used to render the scene,
using the stored radiosity values as the diffuse component of illumination,
and calculating only the specular part (including reflection and refraction).

The main drawback of radiosity, even paired with a raytracer, is the in-
ability to render caustics, which is an important and very visually significant
part of global illumination.

Another inherent drawback of the radiosity algorithm is that illumina-
tion sampling depends on the tesselation of the underlying geometry. Since
lighting is computed per polygon essentially, low-tesselation areas will miss
high-frequency lighting variations such as those at shadow edges. An adap-
tive subdivision technique[16] can be used to ensure proper mesh resolution
wherever it is needed, which complicates the algorithm a lot, and increases

16

CHAPTER 3. DESIGN 17

the number of polygons considerably, which in turn increases rendering time.

In comparison, the photon mapping algorithm can easily simulate caus-
tics, and it works independently of the resolution of the underlying geome-
try. In fact it doesn’t event dictate a certain surface representation, it works
equally well on polygon meshes, implicit surfaces, voxels, point sets, and
really anything for which a ray-intersection routine can be defined.

Another alternative would be to use path tracing. Path tracing has the
advantage that it’s arguably the simplest global illumination algorithm and,
like photon mapping, it calculates the full rendering equation. It does how-
ever converge very slowly, making it impractical.

3.2 Target Platform

The renderer should be able to run on any general purpose computer running
a variant of UNIX, irrespective of endianess or word size. The choice of UNIX
as the target operating system offers some considerable advantages.

UNIX is highly portable, with variants of UNIX running on everything
from handheld devices to supercomputers. A well written program can in
principle be recompiled on any variant of UNIX without, or with minimal,
modifications.

Also most UNIX APIs are well designed, and more powerful than those
provided by other operating systems. So for instance since the renderer
uses the X window system for it’s output window, and since X is network-
transparent, it’s possible to run the renderer on a remote computer and
still be able to monitor the output image on the local display as it’s being
rendered.

Moreover, UNIX is widely emulated by compatibility layers on non-UNIX
systems. Although no testing was done using that configuration, theoreti-
cally the renderer should be able to run under microsoft windows using the
cygwin UNIX compatibility layer or microsoft’s “UNIX services for windows”
package.

In the end however, the choice of operating system was mostly arbitrary,
based on personal preference and familiarity with the system.

3.3 Code Organization

The code structure has been designed with simplicity in mind. Object-
oriented constructs where used wherever made sense, without abusing them
to implement simple procedural concepts with classes.

CHAPTER 3. DESIGN 18

For instance the 3D math library is a collection of classes for vectors,
matrices, quaternions, etc. The renderable objects (spheres, meshes, cylin-
ders) are all subclasses of the Object class, which is in turn a subclass of
XFormNode which handles the hierarchical keyframe animation capabilities.

On the other hand, the image loader is a simple C module, exposing a
load_image function. The thread pool implementation, XML parser, and
window-system glue code also follow the same purely procedural design.

3.3.1 Dependencies

Three important parts of the code are not included in the project per-se,
rather they are reusable libraries written by the author and maintained sep-
arately, all of them pre-dating this project by 3 to 9 years. These are the
math library, the image file loading/saving library, and the kd-tree imple-
mentation. They are all available on public free software project hosting
sites such as sourceforge and googlecode.

The renderer also uses the expat XML parser, POSIX threads, and Xlib.

3.4 Flexible Materials

There are two notable points about the design of materials in s-ray. First of
all, material attributes are pairs of a value, and a texture map. The value
part is a 3d vector, which can be used as color where convenient, or as a
scalar by discarding its last three components. The map which is optional,
if specified, modulates the value over the surface of the object.

This value—map pairing is performed internally and the texture modula-
tion is performed auotmatically, such that for instance, when a shader func-
tion asks for the diffuse color, it automatically gets the diffuse color specified
in the value part, modulated by the texture map if one is specified. This de-
sign provides the ability to render effects such as a partially frosted glass due
to condensation, by just varying the specularity, reflectivity, transparency,
and glossiness with a texture map over the surface of the object, without any
special-cases in the shader.

The second interesting bit is the flexibility afforded by named material
attributes. All attributes are looked up by name, so that each material will be
able to provide all the parameters needed by the shader which uses it. So, for
instance a material using a phong shader function, needs to define specularity
and shininess, while a cook-torrance material will have a roughness attribute.

CHAPTER 3. DESIGN 19

3.5 Parallelism

Ray tracing is one of those algorithms that can be characterized as “em-
barrassingly parallel”. Each primary ray can be traced independently of its
neighbors, making it trivial to split the rendering job among multiple pro-
cesses or threads. For that reason, and since symmetric multiprocessors have
become a comodity in recent years, with even the cheapest personal comput-
ers having at least two execution cores, it was decided from the start that it
would be inexcusable to utilize only a single processor.

There are many ways to parallelize a ray tracer. The simplest would be
to just split the image in n equal parts, where n is the number of processors,
and spawn one thread for each part. Such a scheme would work perfectly if
every part of the image required the same amount of processing, which sadly
is far from true in a ray tracer. Consider for instance a landscape scene, being
viewed roughly parallel to the ground, being rendered by a ray tracer that
splits the image in half, spawning one thread for the top half and one for the
bottom part. In that pathological case, almost all the rays on the top half of
the image will escape to infinity without hitting anything at all, so the thread
will finish its work in milliseconds. The bottom half of the image however
contains essentially the whole scene, which means that all the rendering will
be done by the bottom thread, utilizing only a single processor.

S-ray follows a slightly more complicated approach to parallelize render-
ing, which ensures an even distribution of work among processors, even when
all of the geometry is concentrated in small areas of the image. The image
is broken up into blocks of 64x64 pixels' and the blocks are added to a work
queue. A fixed number of threads, equal to the number of processing units
available are spawned from the beginning, and as soon as there is work in the
queue they wake up, remove a block from the queue and start rendering it.
This means that even if some of the blocks finish very quickly, the threads
will keep busy as long as there are more blocks to be rendered.

This block-by-block rendering also helps cache coherency as most of the
rays in the same block are liable to follow similar paths, accessing the same
parts of the scene database.

3.6 Ray Intersection Acceleration

The most important operation in a ray tracer is undoubtedly the ray inter-
section routine. It is used continuously during rendering and for that reason
it must be as efficient as posible. So, a most important question during

IThat’s actually the default block size, which can be overriden by the user.

CHAPTER 3. DESIGN 20

the design of a ray tracer is how to organize the scene database in order to
minimize intersection costs.

The naive algorithm would test every ray against every object of the
scene, which is obviously very slow for anything but the simplest scenes,
especially if we consider the fact that, for polygon meshes, all polygons of
every mesh must be tested against each ray.

As is often the case with optimizations, the best way to accelerate ray in-
tersections is to choose a better data structure. A linear list of objects simply
does not provide enough information to test for intersections efficiently.

S-ray uses an octree to accelerate ray intersections. Each node of the
octree has an axis-aligned bounding box and pointers to eight child nodes.

To build the scene octree, initially the bounding box of the whole scene
is computed, which is assigned to the root of the tree. That box is then
subdivided into 8 parts which become the root’s child nodes. The process
continues, splitting each node recursively, until the bounding box of each leaf
node contains at most a fixed number of objects, or the maximum tree depth
is reached.

Then, in order to find intersections, we start at the root of the tree and
test if the ray intersects it. If it does, then we recursively test its eight children
and so on until we reach a leaf node at which point all the objects contained in
its bounding box are tested using the regular ray-object intersection routines.
This way, if a ray does not intersect the bounding box of a subtree, the whole
subtree is automatically discarded and all objects that are located only in
that part of the scene are skipped.

Quickly finding which object is intersected by a ray however, is not enough
for raytracing polygon meshes. To find the actual intersection point with the
surface of the object, we must still test all the polygons for intersections. For
that reason, s-ray builds a separate octree for the polygons of each object,
computed in the object’s local coordinate system. Using the local coordinate
system of the object for its polygon octree means that it can be constructed
once at the beginning, and doesn’t have to be rebuilt for subsequent frames
if the object moves. Of course this means that rays must be transformed
with the inverse of the object’s transformation matrix, to bring them into
the object’s local coordinate system for polygon intersection testing. That’s
not an issue however, since that is exactly how all the ray-object intersection
tests are implemented anyway, in order to simplify the math and support
arbitrary transformations for all types of objects.

CHAPTER 3. DESIGN 21

Figure 3.1: Scene octree visualization. The letters at the bottom are all part
of a single mesh

Figure 3.2: Visualization of the octrees of all mesh objects.

CHAPTER 3. DESIGN 22

3.7 Scene Description Format

It was decided early on to use a custom XML file format for the input. XML
is well suited for this task, because of the following reasons:

e It’s easy to edit an XML file, even with a simple text editor. Indeed
the most simple test scenes, such as the cornell box, used throughout
the development of the s-ray renderer where typed in manually in a
text editor.

e [t’s very simple to write converters from other 3D file formats, or ex-
porters from 3D modelling programs that output an XML file. Indeed
there are two such converters written as part of this project, included
in the source distribution of s-ray: o0bj2sray and 3ds2sray. They both
act as command line filter programs, reading Alias—Wavefront OBJ
files and Autodesk 3D studio files respectively from stdin and writing
the corresponding s-ray XML scene description to stdout.

e [t’s easily processed by simple programs. One can easily envision a
pipeline of programs generating geometry and doing various transfor-
mation on the input XML file, before it is fed to the renderer. The
renderer is designed to accept scene descriptions from stdin to facili-
tate this usage. As a trivial example, counting the number of polygons
in a scene can be done using the following simple pipeline:

$ cat scene.xml | grep ’<face’ | wc -1

e [t’s self-documenting, making it very easy for someone to understand
the file format by just glancing at a scene file.

The alternatives would be to use an existing 3D file format such as OBJ,
or a scene description language such as the ones used by renderman or pov-
ray. These ideas where considered briefly, but where abandoned in favor of
the custom XML format.

The problem with most existing 3D file formats, such as OBJ, 3DS, milk-
shape, ply, etc. is that they are not really suitable, as they lack features
needed by a photorealistic ray tracer. None of them supports complex mate-
rials beyond the default phong model, and most of them describe only geom-
etry whereas the renderer needs a file format describing lights and viewing
parameters as well.

There’s one existing format which could suit the needs of the renderer,
called collada. It’s a standardized XML scene description format, which

CHAPTER 3. DESIGN 23

includes all information needed by a ray tracer, and more. The problem with
collada is that in an effort to be extremely generic and flexible, in order to
support everything under the sun, it’s quite bloated and cumbersome. It’s
hard to write a conformant collada loader and only a subset of the format
would be useful for the needs of the s-ray renderer anyway. So, it was decided
that it doesn’t make sense to keep all that buggage in the renderer, and if
collada support is desired in the future to increase interoperability with 3D
modelling programs, a converter which reads collada XML and outputs the
s-ray XML scene description would be simple to write.

Using a scene description language such as the renderman language, and
to a lesser extend the pov-ray language sounds rather interesting. That idea
however was discarded, since it would take a considerable amount of time
to implement a complete programming language for the renderer, it would
complicate the implementation considerably, and it would distract from the
main objective.

3.7.1 Overview of the Scene Input Format

Let’s take a quick look at the XML file format used by the s-ray renderer.
Listing 3.1 shows a simple scene containing a textured floor, which is a mesh
with two triangles, and a refractive sphere, lit by a point light.

The root XML element of the s-ray scene format is “scene”, which may
contain five different element types: “env”, “material”, “object”, “light”,
and “camera’.

The env element specified environmental parameters which are constant
throughout the scene. Currently it can be used to specify an ambient color,
background color (which is used when a ray escapes to infinity), and envi-
ronmental index of refraction.

Material elements are always named, which is how objects refer to them
through the “matref” element, and they contain a series of material attribute
(“mattr”) elements. Material attribute elements in turn have XML attributes
stating their name, value, and optional texture map, as mentioned previously.

Object elements must specify the object type in the “type” attribute, and
the parser then expects to find an appropriate sub-element, so for instance
a sphere object will always have a sphere child element under the object
element. Object sub-elements shared by all kinds of objects are: “xform”
which defines a keyframe, and “matref” which binds a material to that object.

Mesh elements which are found inside object parent elements of type
“mesh” contain essentially lists of vertices, normals, texture coordinates,
tangent vectors, and faces, which refer to all of the above by their id. See
listing 3.1 for more details.

CHAPTER 3. DESIGN

Listing 3.1: Sample XML scene file format

24

<scene name="optional scene name">
<env ambient="0.05 0.05 0.05" bgcolor="0 0O O"
<material name="sphmat" shader="phong">
<mattr name="diffuse" value="0 0 0"/>

ior="1"/>

<mattr name="specular" value="0.6 0.85 1"/>

<mattr name="shininess" value="80"/>
<mattr name="reflect" value="0.9"/>
<mattr name="refract" value="1"/>
<mattr name="ior" value="1.56"/>
</material>
<material name="floormat" shader="phong">

<mattr name="diffuse" value="1 1 1" map="tiles.jpg"/>

</material>
<object name="sphl" type="sphere">
<matref name="sphmat"/>
<xform pos="0 1 0"/>
<sphere rad="1"/>
</object>
<object name="ground" type="mesh">
<matref name="floormat"/>
<mesh>
<vertex id="0" val="-30 0 -30"/>
<vertex id="1" wval="30 0 -30"/>
<vertex id="2" val="30 0 30"/>
<vertex id="3" val="-30 0 30"/>
<normal id="0" val="0 1 0"/>
<texcoord id="0" val="0 0"/>
<texcoord id="1" val="4 0"/>
<texcoord id="2" val="4 4"/>
<texcoord id="3" val="0 4"/>
<face id="0">

<vref vertex="0" normal="0" texcoord="0"/>
<vref vertex="1" normal="0" texcoord="1"/>
<vref vertex="2" normal="0" texcoord="2"/>

</face>
<face id="1">

<vref vertex="0" normal="0" texcoord="0"/>
<vref vertex="2" normal="0" texcoord="2"/>
<vref vertex="3" normal="0" texcoord="3"/>

</face>
</mesh>
</object>
<light type="point" color="1 1 1">
<xform pos="-12 13 -10"/>
</light>
<camera type="target" shutter="0" fov="45">
<xform pos="3 3 -5"/>
<target><xform pos="0 0.5 0"/></target>
</camera>
</scene>

CHAPTER 3. DESIGN 25

The same principles apply to camera and light elements, so again refer
to the example (listing 3.1) for details. Note that the xform tag is reused
there, and can be used to specify multiple keyframes, essentially animating
the light, camera or its target, just like it does for objects.

3.8 Scene Previewer

Due to the non-interactive nature of the ray tracer, it’s hard to quickly verify
the correctness of the scene, make adjustments to viewing parameters, verify
that enough photons will be shot to achieve the required photon density in
various parts of the scene, etc. For all those reasons, it was deemed necessary
to provide an interactive scene preview tool along with the renderer.

Figure 3.3: Interactive OpenGL scene previewer.

The scene previewer takes an XML scene file as input, and presents the
user with a wireframe visualization of all objects, lights, and cameras. The
user is allowed to move through the scene, and if desired a camera XML
element can be written to stdout corresponding to the current view.

Photon visualization is also available. Photons are shot from all light
sources in exactly the same way as the renderer does it, and they are visual-
ized at the positions where they are stored in the photon map data structure.

CHAPTER 3. DESIGN 26

Figure 3.4: Photon visualization in the scene previewer.

The interactive previewer was also an invaluable debugging tool during
the development of the renderer, as it was easily extended to visualize any as-
pect of the scene, such as octrees?, photon projection maps, surface normals,
etc.

3.9 User Interface

The s-ray renderer is a command line program, taking a scene description file
as input and producing the rendered image, or a sequence of images when
rendering an animation, as output.

The default mode of operation, is to present a window to the user, showing
the image as it’s been rendered, although the renderer can also be instructed
to run non-interactively so that it may easily be used without requiring a
display, say on a remote host through ssh.

The rationale behind making the program interactive is two-fold. First of
all by showing the output bit by bit as it’s being rendered, enables the user

2The octrees in figures 3.1 and 3.2 where visualized by the scene previewer

CHAPTER 3. DESIGN 27

to quickly see if something is wrong with the rendering and cancel it, without
having to wait for the whole image to finish. To further facilitate this usage,
the renderer prioritizes blocks of the image near the center, and renders them
first, since this is usually the most interesting area of the picture, progressing
outwards towards blocks at the edge of the image, which are rendered last.
Finally, the output of the renderer is a deep framebuffer with floating point
high dynamic range color. The interactive window can be used to provide
the user with tone mapping controls. Tone mapping is not implemented at
the moment so no such user interface is currently exposed. Instead a fixed
linear mapping is performed from floating point color values to the 24bit per
pixel image shown to the user.

Chapter 4

Implementation

After discussing the major design issues and decisions, we shall continue with
details about the implementation of the most notable algorithms used by the
s-ray renderer.

4.1 Rendering Process Overview

Let’s start with an overview of how the renderer operates in order to take
the input scene file and transform it into a raster image. More details will
follow on the most interesting parts.

During initialization, the command line options are parsed allowing the
user to override any default setting. Such parameters as image size, number
of photons tp use, rays per pixel, animation time interval to render, among
many others can be specified by the user.

If the renderer is running in interactive mode, a connection to the X server
is established, the rendering window is created, and event handlers are set
up. See section 4.2 for more details.

The operating system is queried for the number of available processors,
and the thread pool is initialized, creating an appropriate amount of worker
threads.

Next, the renderer creates the scene database by reading the scene de-
scription XML from a file specified by the user through the command line,
or from the standard input stream if no file was specified.

Before rendering the image, the scene and mesh octrees are constructed by
the recursive space subdivision algorithm described in the previous chapter.

If photon mapping is to be used for global illumination or caustics, the
photon maps are then poppulated by shooting photons from all light sources
as described in section 4.5.2.

28

CHAPTER 4. IMPLEMENTATION 29

The frame is broken up into blocks, assigned a priority based on their
distance from the center of the image, and passed to the worker threads for
rendering, as described in detail in section 4.3.

After rendering finishes, if an animation is being rendered, the frame is
saved as a PNG file in the current directory, and we proceed to render the
next frame. Otherwise, the program just waits for the user to press escape
to exit. At this point the user may also save the image, or dump the photon
maps to a file so that they might be reused.

4.2 Rendering Window

As discussed previously, the X window system is used to present the user
with a window showing the output image as it’s been rendered, and to allow
the user to interact with the renderer.

Initially, a connection with the X server is established, and availability
of the X shared memory extension is determined. The standard DISPLAY
environment variable is can be set by the user to instruct the program to
connect to any local or remote X display.

When the renderer is connected to an X display on the local host, the
X shared memory extension is used for efficient updates of the rendering
window. This basically works by mapping a memory segment to the address
space of both the renderer and the X server through the SystemV IPC APIL.
Then updating the rendering window when a block has finished rendering is
a simple matter of copying the pixels into the shared memory and sending
an XshmPutImage request to let the X server know that a part of the window
must be repainted by blitting parts of the shared image into it.

When connected to a remote X display, the X server will respond that
Xshm is not supported, and the renderer will fall back to updating the win-
dow using the slower traditional XPutImage method, which sends the image
data through the socket to the X server.

4.3 Thread Pool

Durign startup, the renderer creates a number of worker threads, as many
as there are processors in the system.

When there’s no work to be done, all the worker threads are blocked
waiting on a condvar, consuming no resources.

Rendering is initiated by calling start_frame, which creates an, option-
ally sorted by priority, linked list of blocks that have to be rendered, and

CHAPTER 4. IMPLEMENTATION 30

appends them on the work queue, at the same time broadcasting a wakeup
signal to all threads waiting on the condvar.

As soon as a worker thread is woken up, it enters a loop where it tries
to grab a block from the work queue and render it, until there are no more
blocks left in the work queue, at which point the thread goes back to sleep.

When rendering of any block is completed, the main thread must be
notified in order to update the image. A typical self-pipe trick is used to let
the rendering thread asynchronously notify the main thread that a block is
finished. A pipe is created during initialization, the write end of which is
used by the rendering threads to send a single byte when a block is finished.
The main thread is blocked in a call to select, waiting for data from the
file descriptor of the read end of the pipe, and for events from the X server
socket. When a byte is read from the pipe, the main loop wakes up and
updates the rendering window.

4.4 Caching and Lazy Evaluation

A few parts of the ray tracer use lazy evaluation or perform expensive calcu-
lations only when and if they are needed, caching the results and using them
as long as they remain “valid”.

4.4.1 Animation

Specifically, the animation system exposes a set of functions in the transfor-
mation node class, to retrieve the aggregate node transformation matrix, and
its inverse, including hierarchical transformation inheritance and interpola-
tion of all keyframe tracks, for a specific time value. The resulting matrices
are calculated on demand and cached, as long as the same time value is
used in further requests, and if there haven’t been any modifications to the
keyframe tracks, the cached matrices are returned immediately without re-
calculation.

4.4.2 Bounding Box Determination

A similar approach is employed in the calculation of bounding boxes for the
various objects of the scene. A get_bounds function is exposed by the object
class, which lazily calculates the axis-aligned bounding box of the object and
caches the result. Note that the bounding box of an object is also time-
dependent since it must be defined in world space.

CHAPTER 4. IMPLEMENTATION 31

4.4.3 DataCache and Multithreading

The multithreading nature of the renderer intoduces concurrency issues in
the management of the aforementioned cached data. It was deemed necessary
to avoid the overhead incurred by using locking for every access to the cached
data, for which reason a slightly more complicated cache management scheme
was introduced.

The DataCache template class is responsible for maintaining an arbitrary
data item, along with a validity verification key, per thread. The thread id
is used to lookup into a hash table and retrieve the cached data item, using
the key value to verify if the cached data are valid or stale.

For example in the matrix caching case described above, a data cache
holding a pair of matrices (regular and inverse) along with a timestamp, is
kept per transformation node. When a matrix is requested, the requested
time value is compared with the timestamp in the cache, and the decision
is made to use the cached data or recalculate them. All of this can be done
without any locking as it operates on thread-specific data.

4.4.4 Adaptive Multisampling

The user is free to specify a fixed number of rays per pixel, or a range with
a minimum an maximum value. In the second case the renderer determines
how many rays to use per pixel by calculating the variance between the rays
already shot, and comparing it with a user-defined variance threshold. When
the variance drops below the threshold, the process stops.

A histogram of the number of samples actually used per pixel can be
written to the disk by pressing the ‘h’ key at any time during rendering.

Figure 4.1 shows the sampling histogram image produced during the ren-
dering of the image in figure 5.1. The number of samples are visualized using
the red channel of the image.

By examining this histogram visualization it is readily apparent that a
lot of rays are used to sample parts of the picture with sharp color variations,
such as object silhouettes and shadow boundaries, and few are used for other
more smoothly varying parts of the image.

4.5 Photon Mapping

The photon mapping is used by the s-ray renderer to simulate two different
aspects of global illumination: diffuse indirect illumination, and caustics.
Now we shall discuss in detail how both of those are implemented in s-ray.

CHAPTER 4. IMPLEMENTATION 32

Figure 4.1: Sampling histogram visualization. More rays are used to sample
parts of the image with sharp color variations.

Photon mapping works by first shooting photons from all light sources,
and tracing their paths through the environment, until they are absorbed at
which point they are stored in the photon map. The stored photons are then
used during the ray tracing stage to evaluate the global illumination terms
of the rendering equation.

Two separate photon maps are used for each scene: the caustics pho-
ton map and the global photon map. In the caustics photon map we only
store photons that arrive after a specular interaction such as reflection or
refraction, while in the global photon map we store all photons.

4.5.1 Photon Map Data Structure

It is obvious then, that the photon map data structure plays a very important
role in the whole process. The renderer needs to be able to locate stored
photons by their proximity to ray-object intersection points, and so the data

CHAPTER 4. IMPLEMENTATION 33

structure used by the photon map must support fast nearest-neighbor queries.

S-ray uses a kd-tree for the storage of photons, as suggested by Jensen.
A kd-tree is essentially a multidimensional binary search tree [17] where each
level of the tree uses a different axis to split the space. So for instance the
root node might use the x coordinates to split nodes into its left and right
subtrees, the next level down might use y, then z, then z again, and so on.

Nearest neighbor queries in a kd-tree exhibit logarithmic average com-
plexity, making the kd-tree a good choice for the photon map data structure.
Jensen proposes the use of balanced kd-trees, to guarantee logarithmic com-
plexity and avoid pathological worst cases of linear complexity in completely
skewed trees. However, such worst case scenarios aren’t likely due to the
random nature of photon storage, so kd-tree balancing isn’t implemented in
s-ray at the moment.

4.5.2 Photon Shooting

The number of photons to be shot by each light source is calculated by
dividing the total number of photons among all the light sources, weighted
by their relative intensities. It is important to note that since brighter lights
cast more photons according to their intensity, the individual photon power
doesn’t have to be modified, and all photons carry the same amount of energy.

Projection Map

Shooting photons towards empty space is wasteful, especially in sparse en-
vironments. Similarly shooting caustics photons towards parts of the scene
that do not contain specular objects is also wasteful.

In order to concentrate photons towards interesting parts of the scene, a
projection map is used. The possible directions around each light source is
discretized into a number of cells. Each cell is marked as full if it corresponds
to directions that can reach geometry, or empty otherwise. Then, during
photon shooting, random directions are picked from within the full cells,
thus avoiding shooting a lot of photons towards empty space.

The energy of each photon must be scaled by fraction of the full sphere of
directions used for picking photon directions, to account for the energy that
would otherwise be lost, carried by photons that fly out to empty space.

Two projection maps are calculated for each light source, one for shoot-
ing caustics photons towards specular objects, and one for shooting global
photons towards all kinds of objects.

Figure 4.2 shows a visualization of the caustics projection map, used to
concentrate caustic photons towards directions where they might reach the

CHAPTER 4. IMPLEMENTATION 34

Figure 4.2: Projection map visualized as a sphere made out of full and empty
direction cells around the light source

three refractive balls. The filled yellow polygons on the surface of the big
sphere denote full cells, while the rest of the sphere is made up of empty cells,
shown in wireframe. It is apparent from the visualization that for this scene,
only a very small percentage of the total number of photons would have a
chance to reach the refractive balls, if the projection map wasn’t used. The
visualization was produced by the scene previewer.

4.5.3 Photon Tracing

After leaving the light source, photons must be traced as they interact with
the environment. At each intersection of a photon with the geometry, a de-
cision must be taken on what to do next. The process is slightly different
between caustics photons and global photons so let’s examine them sepa-
rately.

CHAPTER 4. IMPLEMENTATION 35

Tracing Caustics Photons

When a caustics photon hits a non-specular object, its path is terminated
and it is stored in the photon map. For specular objects, the photon could
either be reflected, refracted or absorbed (stored in the photon map).

One possibility would by to spawn new photons for each case, with energy
scaled by the reflection or refraction factors of the material. But that would
be wasteful, as we would end up tracing photons carrying very little energy,
and thus visually insignificant.

A much better way proposed by Jensen is to use russian roulette to pick
one of the possible outcomes. Essentially what this means is that we use the
material factors as probabilities for each outcome. So for instance a photon
hitting an object with reflectivity of 0.5, has 50% chance of being reflected,
with its full energy.

The advantage of russian roulette is that we concentrate on important
photons, and also that all photons in the photon map end up with similar
energy levels, something that helps the accuracy of the density estimates
calculated during rendering.

Tracing Global Photons

Global photon tracing follows the same general idea, with the difference that
the possible outcomes after an intersection are different.

First of all russian roulette is employed to choose between the possibilities
of diffuse interaction, specular interaction, or absorption. The probabilities
of diffuse and specular interaction are calculated by the average diffuse and
specular colors respectively.

Selecting absorption terminates the recursion and the photon is stored
in the photon map. Otherwise, if diffuse interaction is picked, a random
direction for diffuse scattering is chosen on the hemisphere above the sur-
face, in which case the power of the photon is multiplied by the lambertian
BRDF (the dot product of the incident photon direction with the normal).
Finally if specular interaction is picked, another russian roulette is employed
to determine whether the photon will be reflected or refracted.

4.5.4 Caustics

In order to render caustics, we must be able to calculate the irradiance due
to reflected or refracted light at every point of the scene, tha is, the amount
of photon energy that reaches any given point after a specular interaction.

CHAPTER 4. IMPLEMENTATION 36

Using the caustics photon map, it’s easy to estimate the irradiance at any
given point by calculating the density of the photon energy in the neighbor-
hood of that point. Nearby photons inside a given radius are gathered by
searching through the kd-tree, and a the density is calculated by dividing the
accumulated photon energy of all the gathered photons by the area of the
gather disc.

The value from the irradiance estimate is added directly to the rest of the
illumination computed by the renderer at that point, which results in bright
areas wherever a lot of light is arriving due to specular interactions.

4.5.5 Diffuse Global Illumination

A similar approach could be taken, for diffuse global illumination by directly
estimating radiance due to diffuse scattering at any given point from the
global photon map, which in that case should only contain photons coming
from diffuse scattering only. That doesn’t work very well however, because in
order to get a good radiance estimate from the photon map, a huge amount
of photons would be required, otherwise the result looks splotchy.

Figure 4.3 shows the first attempt to implement diffuse global illumination
by direct radiance estimation from the global photon map.

Final Gather

A much better technique, which is used by s-ray, is called “final gather”. Two
methods are defined for calculating radiance at any given point: an accurate
calculation, and a rough estimation.

The accurate method is used when we are calculating illumination for
points directly visible, or seen through reflection and refraction. It works
by calculating direct illumination as usual, by sampling light sources with
shadow rays, then casting reflection or refraction secondary rays if applica-
ble, estimating irradiance from the caustics photon map as described previ-
ously, and finally spawning a number of rays randomly distributed on the
hemisphere above the surface, to sample incoming indirect illumination from
other objects.

The inaccurate method is used only when have gone through a diffuse
indirect illumination ray, and it consists of estimating radiance directly from
the global photon map.

So essentially we calculate illumination as usual, with the addition of
gathering light from nearby surfaces by spawning a number of rays which
doesn’t recurse further but use the photon map to estimate radiance wherever
they hit.

CHAPTER 4. IMPLEMENTATION 37

Ny

Figure 4.3: Initial attempt at global diffuse illumination by directly estimat-
ing radiance from the global photon map

Chapter 5

Results

The best way to communicate the results of a 3D rendering project, is nat-
urally through a collection of output images produced by the renderer.

Before going into the most interesting part of the results, which is the
global illumination renderings, let’s first take a look at the less important
features.

5.1 Whitted Ray Tracing

During the early stages of development, while implementing and optimizing
mesh rendering, a simple test scene containing various reflective polygon ob-
jects was created in 3D studio max. To verify the correctness of the renderer,
the scene was also rendered by the internal ray tracer of 3D studio max in
order to compare it with the output of s-ray. Figure 5.1 shows the two im-
ages next to each other. Slight differences in specular highlights are due to
the fact that s-ray uses the original Phong model, while 3D studio uses the
Blinn-Phong variant.

5.2 Animation and Motion Blur

As previously indicated, the s-ray renderer implements distribution ray trac-
ing as described by Cook et al.[1]. Figure 5.2 shows off the use of distribution
ray tracing to render motion blur. Rays are distributed during the time in-
terval that the virtual shutter remains open, to produce the characteristic
streaking of fast-moving objects, like the red sphere in this picture which is
rotating fast around the blue cylinder. The renderer’s keyframe animation
capabilities where used to define the motion of the red ball.

38

CHAPTER 5. RESULTS 39

4 Above: rendering with the s-ray renderer
¥ Below: rendering with the ray tracer of 3dsmax2009

Figure 5.1: Comparison between s-ray and the 3D studio ray tracer. Specular
highlights differ slightly due to different reflectance model used.

CHAPTER 5. RESULTS 40

Figure 5.2: Motion blur

5.3 Caustics

Caustics rendering was a major goal of this project, as they are a visually
significant part of global illumination. The following images demonstrate the
capability of the s-ray renderer to produce caustics.

Figure 5.3 shows the caustics produced due to light being focused onto
the floor by refraction through three colored glass spheres. Not very easily
discernible in this low-resolution version is the fresnel effect, which increases
reflectivity near the edges of the glass balls. Finally, also noticable is the
penumbra regions in the shadows, due to monte carlo sampling of the large
spherical area light used to illuminate the scene.

Figure 5.4 demonstrates reflective caustics formed by light being reflected
from a shiny copper ring onto a wooden table. Notice the characteristic
cardioid shape produced by many cylindrical reflective surfaces, such as the
inside surface of a coffee cup.

Figure 5.5 shows caustics being formed by light transmitted through a
complex glass object, such as the stanford bunny.

CHAPTER 5. RESULTS 41

Figure 5.3: Refractive Caustics

Figure 5.4: Caustics formed by light being reflected from a copper ring onto
a wooden table.

CHAPTER 5. RESULTS 42

Figure 5.5: Caustics due to light transmitted through a glass stanford bunny.
Model source: Stanford University Computer Graphics Laboratory.

5.4 Diffuse Global Illumination

The ability to simulating diffuse indirect lighting was also a major goal of this
project. The following images demonstrate the diffuse global illumination
capabilities of the s-ray renderer.

The cornell box is a good test scene to demonstrate the color bleeding
effect occuring by light arriving to a surface after being diffusely scattered
by another colored surface. Figure 5.6 is a global illumination rendering of
the cornell box, using final gather. Notice the intense color bleeding from
the walls to the ceiling and the, and the sides of the two boxes facing the
walls. The light intensity was turned up in this picture to make color bleeding
clearly visible.

There is some high-frequency variance visible in this image. This is due
to the per-pixel monte carlo diffuse sampling of the hemisphere above each
primary ray intersection point, in order to gather indirect illumination from
the global photon map. The effect is aggravated due to the high light intensity

CHAPTER 5. RESULTS 43

Figure 5.6: Color bleeding due to diffuse interreflections in the Cornell box.

used to to make color bleeding more apparent.

Global illumination in a more complex environment is demonstrated in
figure 5.7. In this rendering of the Sponza atrium model, illumination is
provided by a huge rectangular area light at the opening at the top of the
model. Notice how light arrives and indirectly illuminates the ceiling and the
walls visible through the pillars, as well as under the pillar heads and arches.

A rendering of the same environment using direct illumination only is
provided for comparison (figure 5.8). Notice how dark and underlit the scene
looks without the global illumination component.

CHAPTER 5. RESULTS 44

Figure 5.7: Global illumination rendering of a complex environment. Sponza
atrium modelled by Marko Dabrovic.

CHAPTER 5. RESULTS 45

Figure 5.8: Direct illumination only rendering of the same model for com-
parison.

Chapter 6

Conclusions and Critical
Analysis

The s-ray renderer is a reasonably efficient photorealistic renderer, capable
of simulating all L(D|S)*E light paths, including indirect diffuse illumination
and caustics, which was the original goal of the project.

Furthermore, the renderer supports a good range of features such as: full
use of symmetric multiprocessing systems, efficient rendering of arbitrary
polygonal meshes, adaptive anti-aliasing, extended animation capabilities,
motion blur, soft shadows, etc.

6.1 Limitations

Still, it doesn’t mean that the renderer is perfect. Performance is one thing
that could be improved a lot, especially during final gather.

6.1.1 Irradiance Caching

A big performance benefit can be obtained by not using final gather to calcu-
late indirect diffuse illumination everywhere, but instead caching irradiance
values on diffuse surfaces and re-using them by interpolating between cached
values wherever possible.

The interpolation between cached irradiance values would also help reduce
the high-frequency noise due to per-pixel monte carlo evaluation of indirect
diffuse illumination, thus improving image quality.

46

CHAPTER 6. CONCLUSIONS AND CRITICAL ANALYSIS 47

6.1.2 Importance Sampling using the Photon Map

Another important optimization would be to use the photon map, during
final gather, to find the directions where most photons are coming from, and
concentrate the diffuse samples towards those directions.

6.1.3 Photon Filtering

Caustic quality can be improved by weighing the contribution of each photon
in the irradiance estimate by its proximity to the point of evaluation. This
would reduce blurriness, and make it possible to get crisp caustics with even
fewer photons in the photon map, and larger gather distance.

6.2 Future Work

Future work on the s-ray renderer, should initially concentrate on perfor-
mance optimizations, such as the ones mentioned in the previous section.
Especially implementing irradiance caching will probably bring considerable
performance gains to the renderer.

Furthermore, it would be beneficial to explore alternative space subdivi-
sion techniques for ray intersection acceleration. Especially using a kd-tree
for space subdivision, with the surface area heuristic[18] for deciding which
splitting plane to use for each node, seem very promising for improving the
overall performance of the ray tracer.

On the features front, the first thing to add would be an implementation
of tone mapping, for proper conversion of the internal floating point high-
dynamic range framebuffer to the low range 8bit per color component image
presented to the user.

Also, it would be a good idea to get rid of arbitrary light intensity and
photon power settings, and use standard CIE illuminants instead. That
would remove the trial & error tuning of light parameters, and allow the user
to just select the appropriate illuminant and let the renderer figure out the
rest.

Finally it more interesting features could be added such as more complex
reflectance models, or even a general shader plugin system for letting the user
write custom shader programs in the form of dynamically loaded libraries.

Bibliography

1]

[10]

[11]

R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
Proceedings of SIGGRAPH 198/, pp. 137-145, July 1984.

J. T. Kajiya, “The rendering equation,” in Proceedings of SIGGRAPH
1986, pp. 143-150, ACM Press / ACM SIGGRAPH, 1986.

H. W. Jensen, Realistic Image Synthesis Using Photon Mapping. A. K.
Peters, 2001.

P. S. Heckbert, “Adaptive radiosity textures for bidirectional ray trac-
ing,” in Proceedings of SIGGRAPH 1990, vol. 24, pp. 145-154, Aug.
1990.

A. Appel, “Some techniques for shading machine renderings of solids,”
in AFIPS 1968 Spring Joint Computer Conf., vol. 32, pp. 37-45, 1968.

W. Turner, “An improved illumination model for shaded display,”
CACM, 1980, vol. 23, no. 6, pp. 343-349, 1980.

C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Mod-
eling the interaction of light between diffuse surfaces,” in Proceedings of
SIGGRAPH 1984, pp. 213-222, ACM, 1984.

M. F. Cohen and D. P. Greenberg, “The hemi-cube: a radiosity solution
for complex environments,” in Proceedings of SIGGRAPH 1985, pp. 31—
40, ACM, 1985.

R. Siegel and J. R. Howel, Thermal Radiation Heat Transfer. Hemi-
sphere Publishing Corp., 1981.

B. T. Phong, Illlumination for computer-generated images. PhD thesis,
Dept. of Electrical Engineering, University of Utah, 1973.

J. F. Blinn, “Models of light reflection for computer synthesized pic-
tures,” in Proceedings of SIGGRAPH 1977, pp. 192198, July 1977.

48

BIBLIOGRAPHY 49

[12]

[13]

[15]

[16]

E. P. Lafortune and Y. D. Willems, “Using the Modified Phong BRDF
for Physically Based Rendering,” Technical Report CW197, Department
of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium,
Nov. 1994.

R. L. Cook and K. E. Torrance, “A reflectance model for computer
graphics,” in Proceedings of SIGGRAPH 1981, Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, ACM Press / ACM SIG-
GRAPH, 1981.

M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance
model,” in Proceedings of SIGGRAPH 1994, Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, ACM Press / ACM SIG-
GRAPH, 1994.

C. Schlick, “A customizable reflectance model for everyday rendering,”
in Fourt Eurographics Workshop on Rendering, pp. 73-84, Eurographics,
June 1993.

M. F. Cohen, S. E. Chen, J. R. Wallace, and D. P. Greenberg, “A pro-
gressive refinement approach to fast radiosity image generation,” SIG-
GRAPH Computer Graphics, vol. 22, no. 4, pp. 75-84, 1988.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975.

V. Havran, Heuristic Ray Shooting Algorithms. PhD thesis, Czech Tech-
nical University, 2000.

