Magellan Protocol and API Specification

John Tsiombikas*

June 26, 2007

1 Introduction

In order to use the 6dof input devices by 3Dconnezxion on UNIX systems,
such as “space navigator”, “spaceball”, etc. Two components are provided
by the vendor: a user space driver (i.e. a daemon), and a small library called
“magellan,” to communicate with that daemon, and process input events
transmitted by the daemon.

As part of the effort to replace the proprietary UNIX driver provided by
the hardware vendor, it was deemed appropriate to also provide an acom-
panying free software implementation of the magellan library, without the
shady licensing terms imposed on the original.

The purpose of this document is to describe the application programming
interface of the magellan library, and the communication protocol between
the library and the daemon, so that someone who hasn’t seen the original
code of the magellan library will be able to produce a cleanroom reimple-
mentation to be released as free software.

2 Event Types and Structures

There are three types of events that can be received The actual event types
are communicated through X11 atoms, so these values are only visible to
the application and of no consequence to the protocol. However there is no
reason to introduce incompatibilities with programs that may have foolishly
hardcoded those values, so they should be kept the same.

enum {
MagellanInputMotionEvent = 1,

*e-mail: nuclear@siggraph.org



MagellanInputButtonEvent = 2,
MagellanInputButtonReleaseEvent = 3
s

The following structures are used to store input events after being pro-
cessed by MagellanInputEvent or MagellanTranslateEvent.

typedef union {
int datal[7];
int button;

} MagellanIntUnion;

typedef struct {
int type;
MagellanIntUnion u;
} MagellanIntEvent;

typedef struct {
int MagellanType;
int MagellanButton;
double MagellanData [6];
int MagellanPeriod;

} MagellanFloatEvent;

Finally, in order to be able to acess the data and MagellanData values,
in a meaningful symbolic manner, the following enumeration is also required:

enum {
MagellanX, /* X translation */
MagellanY, /* Y translation */
MagellanZ, /* Z translation */
MagellanA, /* rotation around X */
MagellanB, /* rotation around Y */
MagellanC /* rotation around Z */

}s

3 Functions

3.1 Overview of Prototypes

The following functions must be visible to the user program:

int MagellanInit (Display *dpy, Window win);

int MagellanClose (Display *dpy);

int MagellanSetWindow (Display *dpy, Window win);

int MagellanApplicationSensitivity(Display *dpy, double sens)

int MagellanInputEvent (Display #*dpy, XEvent *event,
MagellanIntEvent *mag_event) ;



int MagellanTranslateEvent (Display *dpy, XEvent *event,
MagellanFloatEvent *mag_event, double tscale, double
rscale);

int MagellanRemoveMotionEvents (Display *dpy);

int MagellanRotationMatrix (double mat [4][4], double c, double
b, double a);

int MagellanMultiplicationMatrix (double mat_a[4][4], double
mat_b [4][4], double mat_c[4][4]);

3.2 Function Specifications
3.2.1 Magellanlnit

Prototype:
int MagellanInit(Display *dpy, Window win);

This function initializes the library, and registers the user’s event-handling
window with the daemon. The return value is boolean, non-zero is returned
in case of successful initialization, or zero otherwise.

During initialization the values of the following X server atoms must
be determined and stored somewhere for reuse by the rest of the functions:
MotionEvent, ButtonPressEvent, ButtonReleaseEvent, and CommandEvent.
If these atoms are not already available on the X server, it means that the
daemon is not running and has never done so during this X session, because
the daemon interns those atoms upon connection to the X server. In that
case of course the function must return zero.

Finally, MagellanSetWindow must be called in order to register the user’s
window with the daemon. MagellanSetWindow can only fail if the daemon
is not running, in which case this function must return zero.

3.2.2 MagellanClose

Prototype:
int MagellanClose(Display *dpy);

In the original SDK, which probably assumes the daemon can only handle
one client at a time, this function sets the client window to InputFocus. If
we don’t set a valid window before exit, possibly the proprietary daemon will
exit with a BadWindow error next time it tries to send an event. However, the
InputFocus window at this point makes no sense, and I suggest setting the
root window, which can be detected and ignored by our free daemon easily.



3.2.3 MagellanSetWindow

Prototype:
int MagellanSetWindow(Display #*dpy, Window win);

This function registers the application window which will handle magellan
events, with the daemon. This is done by sending a ClientMessage event to
the daemon’s X window, which contains a message_type equal to the value
of the atom CommandEvent, the most significant 16 bits of the window id in
the first 16 bit data slot, the least significant 16 bits of the window id in the
second 16 bit data slot, and the value 27695 (which is the identifier of the
“set application window” command) in the third 16 bit data slot.

In order to retrieve the daemon’s X window identifier, the root window
must be examined for a CommandEvent property (see registered atoms), which
contains the daemon’s X window id as its value. If that property does not
exist, it means that the daemon is not running, and this function must return
zZero.

Our free daemon removes these properties from the root windows upon
exit, so there is no way to retrieve a window id which is reassigned to another
X client after the exit of the daemon. However apparently the proprietary
daemon doesn’t do that, which is why the official SDK version of this function
also verifies that the title of the retrieved window is: “Magellan Window”
or fails otherwise. It is suggested for the sake of compatibility, that we do
likewise.

Also in order to avoid crashing the application with a BadWindow error
in case the retrieved window id is invalid, a custom X error handler must be
installed before calling XSendEvent, to catch such errors.

Note that due to the asynchronous nature of the X protocol, the only way
to make sure that the aforementioned error will occur before we remove the
custom error handler, and thus won’t go uncaught, is to call XSync before
removing the handler!.

3.2.4 MagellanApplicationSensitivity

Prototype:
int MagellanApplicationSensitivity(Display *dpy, double sens)

This function sets a non-persistent application sensitivity value, which is
used by the daemon to scale the motion events, before they are sent to the

IThe official SDK fails to call XSync as it should. It only calls XFlush which is not
sufficient.



application. This is done by sending a ClientMessage event to the daemon’s
X window, which contains a message_type equal to the value of the atom
CommandEvent. The sensitivity value is converted to a 32 bit floating point
value before, the least significant 16 bit part of which is passed through the
first 16 bit data slot of the event, and the most significant 16 bit part of is
passed through the second 16 bit data slot. The third 16 bit data slot must
contain the value 27696 (which is the identifier of the “application sensitivity”
command).

For the details on how to extract the daemon’s window id, see the speci-
fication of MagellanSetWindow above.

3.2.5 MagellanInputEvent

Prototype:

int MagellanInputEvent (Display *dpy, XEvent *event,
MagellanIntEvent *mag_event);

This function processes a ClientMessage X event sent by the daemon
containing one of the three types of possible magellan events, and fills in the
MagellanIntEvent structure pointed to by the third argument.

This function returns zero for failure, if the X event is not a client mes-
sage, or if the library isn’t initialized. On success the type of magellan
event is returned, which can be MagellanInputMotionEvent, MagellanIn-
putButtonPressEvent, or MagellanInputButtonReleaseEvent (see event
definitions at the beginning of this document).

The event type can be determined by the message type field of the
ClientMessage, which contains any of the following atoms: MotionEvent,
ButtonPressEvent, or ButtonReleaseEvent.

For motion events, the type of the MagellanIntEvent structure must
be set to MagellanInputMotionEvent. The six motion values must be ex-
tracted from the positions: 2, 3, 4, 5, 6, and 7 of the array of 16 bit data in
the X ClientMessage event, and put into the first six positions of the Mag-
ellanIntEvent u.data array. Finally the ninth 16 bit slot of the X event
data array contains the period that has elapsed from the previous motion
event. This value must be multiplied by 1000, divided by 60, and placed into
u.datal6]

For button press and button release events, the type of the Magellan-
IntEvent structure must be set to MagellanInputButtonPressEvent or
MagellanInputButtonReleaseEvent accordingly. Then the button identi-
fier must be extracted from the third 16 bit data slot of the X event and
placed in u.button of the MagellanIntEvent structure.



3.2.6 MagellanTranslateEvent

Prototype:

int MagellanTranslateEvent (Display *dpy, XEvent *event,
MagellanFloatEvent *mag_event, double tscale, double
rscale);

Ok this is really strange ... This function does exactly what Magellan-
InputEvent does, but instead of filling in a MagellanIntEvent, it uses a
MagellanFloatEvent, which has the following variations:

e The type field is called MagellanType instead of just type.
e The u.data array is replaced by the MagellanData array.

e The first three motion values (translation) are multiplied by tscale,
and the next three (rotation) by rscale.

e The period now goes into MagellanPeriod instead of u.datal[6], and
is not multipled or divided by anything.

e Button number goes into MagellanButton instead of u.button.

3.2.7 MagellanRemoveMotionEvents

Prototype:

int MagellanRemoveMotionEvents (Display *dpy);

This function discards all pending motion events from the X event queue.
In order to remove all such events without disturbing any other events in
the queue, the XCheckIfEvent function can be used, with a predicate func-
tion that matches motion events. Any ClientMessage events with a mes-
sage_type field equal to the value of the MotionEvent atom, are considered
motion events.

3.2.8 MagellanRotationMatrix

Prototype:

int MagellanRotationMatrix (double mat [4][4], double x, double
y, double z);

This is a helper function, that constructs a rotation matrix out of three
euler angles. Always returns non-zero.



3.2.9 MagellanMultiplicationMatrix

int MagellanMultiplicationMatrix (double mat_a[4][4], double
mat_b [4][4], double mat_c[4][4]);

This function performs matrix multiplication between mat_b and mat_c,
and stores the result in mat_a. Always returns non-zero.



