
Introduction to Computer Graphics
with OpenGL

Ioannis Tsiombikas
nuclear@siggraph.org

Introduction to Computer Graphics with OpenGL – p. 1



Computer graphics

Algorithms to transform mathematical representations of
3D environments to images.

Possible representations:

Polyhedral approximation of surfaces.

Mathematical equations describing surfaces (i.e.
x2 + y2 + z2 = r2).

Volume defined by density values (binary or not) at
discrete points in a 3D scalar field (voxels).

Introduction to Computer Graphics with OpenGL – p. 2



Computer graphics

Algorithms to transform mathematical representations of
3D environments to images.

Possible representations:

Polyhedral approximation of surfaces.

Mathematical equations describing surfaces (i.e.
x2 + y2 + z2 = r2).

Volume defined by density values (binary or not) at
discrete points in a 3D scalar field (voxels).

Introduction to Computer Graphics with OpenGL – p. 2



Computer graphics

Algorithms to transform mathematical representations of
3D environments to images.

Possible representations:

Polyhedral approximation of surfaces.

Mathematical equations describing surfaces (i.e.
x2 + y2 + z2 = r2).

Volume defined by density values (binary or not) at
discrete points in a 3D scalar field (voxels).

Introduction to Computer Graphics with OpenGL – p. 2



Computer graphics

Algorithms to transform mathematical representations of
3D environments to images.

Possible representations:

Polyhedral approximation of surfaces.

Mathematical equations describing surfaces (i.e.
x2 + y2 + z2 = r2).

Volume defined by density values (binary or not) at
discrete points in a 3D scalar field (voxels).

Introduction to Computer Graphics with OpenGL – p. 2



Real–time graphics

The major distinction in graphics: real–time vs off–line
rendering.

Real–time graphics algorithms sacrifice image quality to
achieve rapid, sub–second, drawing rates. This enables
us to interactively rearrange objects or the view–point
thus allowing us to “navigate” in a 3D environment or
manipulate it.

Used in games, interactive visualizations, 3D
modelling/animation tools, etc.

Introduction to Computer Graphics with OpenGL – p. 3



OpenGL

OpenGL is an open standard for dealing with 3D
graphics, with source–compatible implementations on
every major platform capable of graphical output.

Controlled by a special committee, the Architecture
Review Board (ARB).

Targeted towards interactive programs and real–time
graphics.

Stable programming interface.

Flexible due to an extension mechanism for
additional “cutting–edge” functionality.

Simple state–machine design.

Introduction to Computer Graphics with OpenGL – p. 4



The rendering pipeline

Introduction to Computer Graphics with OpenGL – p. 5



Transformations

A 3x3 matrix defines a linear transformation in 3D space
(rotation, scaling, etc.). However it is more convinient to
work on 4D space and at the end keep a 3D projection of
that.

Our vectors become (x, y, z, w) with w = 1 for the
equivalent of 3D vectors, and we use 4x4 matrices to
transform them.

By using this technique (called homogeneous
coordinates) we can place points at infinity (w = 0), but
most importantly, include 3D translation in our
transformation matrices.

Introduction to Computer Graphics with OpenGL – p. 6



Transformations

Transform vectors by multiplying them with the
appropriate matrix.









x′

y′

z′

w′









=









m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44









·









x

y

z

w









To concatenate a series of transformations in one matrix,
multiply all the matrices together.
Note: order matters! Matrix multiplication is not
commutative.

Introduction to Computer Graphics with OpenGL – p. 7



Transformations: rotation

Rotx(θ) =









1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1









Roty(θ) =









cos θ 0 sin θ 0

0 1 0 0

− sin θ 0 cos θ 0

0 0 0 1









Rotz(θ) =









cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1









Introduction to Computer Graphics with OpenGL – p. 8



Transformations: translation/scaling

T (tx, ty, tz) =









1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1









S(sx, sy, sz) =









sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1









Introduction to Computer Graphics with OpenGL – p. 9



OpenGL transformations

OpenGL maintains matrix stacks for all stages of the
pipeline. However world and view transformations are
combined in one (modelview).
To manipulate the matrix state, first specify which stack
we wish to affect with glMatrixMode(), and call:

glLoadMatrixf() / glMultMatrixf() to load or
concatenate an arbitrary matrix to the top matrix.

glLoadIdentity() to load the identity matrix.

glTranslatef() / glRotatef() / glScalef() to
concatenate the desired transformation matrix to the
top matrix.

glPushMatrix() / glPopMatrix() for the usual stack
operations.

Introduction to Computer Graphics with OpenGL – p. 10



OpenGL transformations

OpenGL maintains matrix stacks for all stages of the
pipeline. However world and view transformations are
combined in one (modelview).
To manipulate the matrix state, first specify which stack
we wish to affect with glMatrixMode(), and call:

glLoadMatrixf() / glMultMatrixf() to load or
concatenate an arbitrary matrix to the top matrix.

glLoadIdentity() to load the identity matrix.

glTranslatef() / glRotatef() / glScalef() to
concatenate the desired transformation matrix to the
top matrix.

glPushMatrix() / glPopMatrix() for the usual stack
operations.

Introduction to Computer Graphics with OpenGL – p. 10



OpenGL transformations

OpenGL maintains matrix stacks for all stages of the
pipeline. However world and view transformations are
combined in one (modelview).
To manipulate the matrix state, first specify which stack
we wish to affect with glMatrixMode(), and call:

glLoadMatrixf() / glMultMatrixf() to load or
concatenate an arbitrary matrix to the top matrix.

glLoadIdentity() to load the identity matrix.

glTranslatef() / glRotatef() / glScalef() to
concatenate the desired transformation matrix to the
top matrix.

glPushMatrix() / glPopMatrix() for the usual stack
operations.

Introduction to Computer Graphics with OpenGL – p. 10



OpenGL transformations

OpenGL maintains matrix stacks for all stages of the
pipeline. However world and view transformations are
combined in one (modelview).
To manipulate the matrix state, first specify which stack
we wish to affect with glMatrixMode(), and call:

glLoadMatrixf() / glMultMatrixf() to load or
concatenate an arbitrary matrix to the top matrix.

glLoadIdentity() to load the identity matrix.

glTranslatef() / glRotatef() / glScalef() to
concatenate the desired transformation matrix to the
top matrix.

glPushMatrix() / glPopMatrix() for the usual stack
operations.

Introduction to Computer Graphics with OpenGL – p. 10



OpenGL transformations

OpenGL maintains matrix stacks for all stages of the
pipeline. However world and view transformations are
combined in one (modelview).
To manipulate the matrix state, first specify which stack
we wish to affect with glMatrixMode(), and call:

glLoadMatrixf() / glMultMatrixf() to load or
concatenate an arbitrary matrix to the top matrix.

glLoadIdentity() to load the identity matrix.

glTranslatef() / glRotatef() / glScalef() to
concatenate the desired transformation matrix to the
top matrix.

glPushMatrix() / glPopMatrix() for the usual stack
operations.

Introduction to Computer Graphics with OpenGL – p. 10



OpenGL 3D object data

Vertices, grouped in triangles, quadrilaterals, or polygons
define the surfaces of objects in 3D space. Apart from
their positions that define the surface, there is a number
of additional per–vertex data commonly given to
OpenGL:

Vertex colors (if lighting is disabled, useful for
precalculated lighting).

Normal vectors (used for lighting calculations).

Texture mapping coordinates.

Introduction to Computer Graphics with OpenGL – p. 11



OpenGL 3D object data

Vertex data can be given to OpenGL in many ways.

Immediate mode, glBegin() / glEnd().

Vertex arrays (in GL client memory).

Vertex buffer objects (vertex arrays in GL server
memory).

Display lists.

Introduction to Computer Graphics with OpenGL – p. 12



OpenGL 3D object data

Vertex data can be given to OpenGL in many ways.

Immediate mode, glBegin() / glEnd().

Vertex arrays (in GL client memory).

Vertex buffer objects (vertex arrays in GL server
memory).

Display lists.

Introduction to Computer Graphics with OpenGL – p. 12



OpenGL 3D object data

Vertex data can be given to OpenGL in many ways.

Immediate mode, glBegin() / glEnd().

Vertex arrays (in GL client memory).

Vertex buffer objects (vertex arrays in GL server
memory).

Display lists.

Introduction to Computer Graphics with OpenGL – p. 12



OpenGL 3D object data

Vertex data can be given to OpenGL in many ways.

Immediate mode, glBegin() / glEnd().

Vertex arrays (in GL client memory).

Vertex buffer objects (vertex arrays in GL server
memory).

Display lists.

Introduction to Computer Graphics with OpenGL – p. 12



OpenGL 3D object data

Vertex data can be given to OpenGL in many ways.

Immediate mode, glBegin() / glEnd().

Vertex arrays (in GL client memory).

Vertex buffer objects (vertex arrays in GL server
memory).

Display lists.

Introduction to Computer Graphics with OpenGL – p. 12



Lighting

For each vertex, a color is calculated as a function of the
intensity of the illumination reflected off the surface
towards the viewpoint, and the material of the surface.
Then color from each polygon’s vertices are linearly
interpolated across its surface to calculate the color of
each pixel. Lights are represented as points, typically in
world coordinates.

A Ma +
lnum
∑

i=1

D(li, n) Md + S(li, v) Ms

D(l, n) = l · n

S(l, n, v, p) = (l · reflect(v, n))p

Introduction to Computer Graphics with OpenGL – p. 13



Lighting

For each vertex, a color is calculated as a function of the
intensity of the illumination reflected off the surface
towards the viewpoint, and the material of the surface.
Then color from each polygon’s vertices are linearly
interpolated across its surface to calculate the color of
each pixel. Lights are represented as points, typically in
world coordinates.

A Ma +
lnum
∑

i=1

D(li, n) Md + S(li, v) Ms

D(l, n) = l · n

S(l, n, v, p) = (l · reflect(v, n))p

Introduction to Computer Graphics with OpenGL – p. 13



Lighting

For each vertex, a color is calculated as a function of the
intensity of the illumination reflected off the surface
towards the viewpoint, and the material of the surface.
Then color from each polygon’s vertices are linearly
interpolated across its surface to calculate the color of
each pixel. Lights are represented as points, typically in
world coordinates.

A Ma +
lnum
∑

i=1

D(li, n) Md + S(li, v) Ms

D(l, n) = l · n

S(l, n, v, p) = (l · reflect(v, n))p

Introduction to Computer Graphics with OpenGL – p. 13



Lighting

For each vertex, a color is calculated as a function of the
intensity of the illumination reflected off the surface
towards the viewpoint, and the material of the surface.
Then color from each polygon’s vertices are linearly
interpolated across its surface to calculate the color of
each pixel. Lights are represented as points, typically in
world coordinates.

A Ma +
lnum
∑

i=1

D(li, n) Md + S(li, v) Ms

D(l, n) = l · n

S(l, n, v, p) = (l · reflect(v, n))p

Introduction to Computer Graphics with OpenGL – p. 13



OpenGL Lighting: Materials

OpenGL handles light calculations if we provide vertex
normals, light and material parameters, and enable set
the appropriate state.

The following material parameters can be set using the
glMaterialf() and glMaterialfv() functions:

Color (seperate for ambient, specular and diffuse).

Shininess (the specular power).

Self–illumination.

Introduction to Computer Graphics with OpenGL – p. 14



OpenGL Lighting: Materials

OpenGL handles light calculations if we provide vertex
normals, light and material parameters, and enable set
the appropriate state.

The following material parameters can be set using the
glMaterialf() and glMaterialfv() functions:

Color (seperate for ambient, specular and diffuse).

Shininess (the specular power).

Self–illumination.

Introduction to Computer Graphics with OpenGL – p. 14



OpenGL Lighting: Materials

OpenGL handles light calculations if we provide vertex
normals, light and material parameters, and enable set
the appropriate state.

The following material parameters can be set using the
glMaterialf() and glMaterialfv() functions:

Color (seperate for ambient, specular and diffuse).

Shininess (the specular power).

Self–illumination.

Introduction to Computer Graphics with OpenGL – p. 14



OpenGL Lighting: Materials

OpenGL handles light calculations if we provide vertex
normals, light and material parameters, and enable set
the appropriate state.

The following material parameters can be set using the
glMaterialf() and glMaterialfv() functions:

Color (seperate for ambient, specular and diffuse).

Shininess (the specular power).

Self–illumination.

Introduction to Computer Graphics with OpenGL – p. 14



OpenGL Lighting: Lights

Light parameters are set using the glLightf() and
glLightfv().

Light parameters:

Position or direction.

Color (seperated into ambient, diffuse and specular
components).

Optional spotlight illumination cone.

Optional distance attenuation coefficients.

Introduction to Computer Graphics with OpenGL – p. 15



OpenGL Lighting: Lights

Light parameters are set using the glLightf() and
glLightfv().

Light parameters:

Position or direction.

Color (seperated into ambient, diffuse and specular
components).

Optional spotlight illumination cone.

Optional distance attenuation coefficients.

Introduction to Computer Graphics with OpenGL – p. 15



OpenGL Lighting: Lights

Light parameters are set using the glLightf() and
glLightfv().

Light parameters:

Position or direction.

Color (seperated into ambient, diffuse and specular
components).

Optional spotlight illumination cone.

Optional distance attenuation coefficients.

Introduction to Computer Graphics with OpenGL – p. 15



OpenGL Lighting: Lights

Light parameters are set using the glLightf() and
glLightfv().

Light parameters:

Position or direction.

Color (seperated into ambient, diffuse and specular
components).

Optional spotlight illumination cone.

Optional distance attenuation coefficients.

Introduction to Computer Graphics with OpenGL – p. 15



OpenGL Lighting: Lights

Light parameters are set using the glLightf() and
glLightfv().

Light parameters:

Position or direction.

Color (seperated into ambient, diffuse and specular
components).

Optional spotlight illumination cone.

Optional distance attenuation coefficients.

Introduction to Computer Graphics with OpenGL – p. 15


	Computer graphics
	Computer graphics
	Computer graphics
	Computer graphics

	Real--time graphics
	OpenGL
	The rendering pipeline
	Transformations
	Transformations
	Transformations: rotation
	Transformations: translation/scaling
	OpenGL transformations
	OpenGL transformations
	OpenGL transformations
	OpenGL transformations
	OpenGL transformations

	OpenGL 3D object data
	OpenGL 3D object data
	OpenGL 3D object data
	OpenGL 3D object data
	OpenGL 3D object data
	OpenGL 3D object data

	Lighting
	Lighting
	Lighting
	Lighting

	OpenGL Lighting: Materials
	OpenGL Lighting: Materials
	OpenGL Lighting: Materials
	OpenGL Lighting: Materials

	OpenGL Lighting: Lights
	OpenGL Lighting: Lights
	OpenGL Lighting: Lights
	OpenGL Lighting: Lights
	OpenGL Lighting: Lights


