
DEPARTMENT OF COMPUTER SCIENCE

COURSEWORK ASSESSMENT DESCRIPTION

MODULE DETAILS:

Module Number:

08964
Semester:

2

Module Title:

Simulation and Concurrency

Lecturer:

WJV / DPMW / DDM

COURSEWORK DETAILS:

Coursework
Assessment Number:

 1 of 1

Title of Assignment:

Galton Box Simulation

Format:

 Program Report Demonstration

Method of Working:

 Individual

Workload Guidance: Typically, you should
expect to spend between

75 and 125
hours on this
assessment

Length of
Submission:

This assignment should be no

more than:
1500 words

PUBLICATION:

Date of issue:

Week 4

SUBMISSION:

ONE copy of this
assignment should
be handed in via:

 E-Bridge
If Other

(please state method)

Time and date for
submission:

Intermediate Review
Source Code

Report
Demonstration

Week 9 during lab slot
09:30 Monday 11th May - Week 12
09:30 Monday 18th May - Week 13

Weeks 13 & 14

If multiple hand–ins
please provide
details
(as appropriate):

The assignment should be handed in no later than the time and date shown above, unless an

extension has been authorised on a Request for an Extension for an Assessment (Mit Circs)
form which is available from the Office or http://www.student-
admin.hull.ac.uk/downloads/Mitcircs.doc. The extension form, once authorised by the lecturer
concerned, should be sent to Amanda Millson.

MARKING:

Marking will be by:

 Student Name

http://www.student-admin.hull.ac.uk/downloads/Mitcircs.doc
http://www.student-admin.hull.ac.uk/downloads/Mitcircs.doc

BEFORE submission, each student must complete the correct departmental coursework cover
sheet dependant upon whether the assignment is being marked by student number, student
name, group number or group name. This is obtainable from the departmental student intranet
at
http://intra.net.dcs.hull.ac.uk/sites/home/student/ACW%20Cover%20Sheets/Forms/AllItems.as
px

ASSESSMENT:

The assignment is
marked out of:

100
and is
worth

 100
% of the
module
marks

ASSESSMENT STRATEGY AND LEARNING OUTCOMES:
The overall assessment strategy is designed to evaluate the student’s achievement of the
module learning outcomes, and is subdivided as follows:

LO Learning Outcome Method of Assessment
{e.g. report, demo}

1

2

3

4

5

Demonstrate research, selection and asessment
of concurrent and distributed architectures and
implementation techniques

Analyse real world problems and identify
appropriate physically-based algorithms for their
simulation

Implement distributed applications in C++

Implement real world simulation, applying
techniques from mathematics and physics, for
use in virtual environments and computer games

Use the mathematical techniques of vectors,
matrices and numerical integration

Program, Report

Program, Report

Program

Program

Program

Assessment Criteria Contributes to
Learning Outcome

Mark

Quality of system architecture

Quality of distribution implementation

Quality of completed product

Quality of Visualization and input/output

Performance of the collision detection
algorithms

Performance of the collision response

Overall PBM design, implementation and
selection of algorithms

1

1,3

1,3

4

4,5

4,5

2,4

15

25

10

10

15

10

15

http://intra.net.dcs.hull.ac.uk/sites/home/student/ACW%20Cover%20Sheets/Forms/AllItems.aspx
http://intra.net.dcs.hull.ac.uk/sites/home/student/ACW%20Cover%20Sheets/Forms/AllItems.aspx

FEEDBACK

Feedback will be
given via:

 Mark Sheet
Feedback will
be given via:

 N/A

Exemption
(staff to explain why)

Feedback will be provided no later than 20 working days after the submission date.

This assessment is set in the context of the learning outcomes for the module and does not by
itself constitute a definitive specification of the assessment. If you are in any doubt as to the
relationship between what you have been asked to do and the module content you should take
this matter up with the member of staff who set the assessment as soon as possible.

You are advised to read the NOTES regarding late penalties, over-length assignments, unfair
means and quality assurance in your student handbook, also available on the department’s
student intranet at: http://intra.net.dcs.hull.ac.uk/sites/home/student/default.aspx. In
addition, please note that if one student gives their solution to another student who submits it
as their own work, BOTH students are breaking the unfair means regulations, and will be
investigated.

In case of any subsequent dispute, query, or appeal regarding your coursework, you are
reminded that it is your responsibility, not the Department’s, to produce the assignment in
question.

Assignment Details

08964 Assessment Description

Derek Wills, Warren Viant and Darren McKie

1.0 Aim

The aim of the assessment is to create a simulation of a Galton Box variation, distributed across two

PC computers.

2.0 Configuration

The basic box used in this simulation is constructed from two transparent faces that sandwich a

number of regularly placed pins (figure 1). Pins, diameter 2.5 cm, are placed in rows across the box,

each pin separated by 10 cm. Alternate rows are displaced horizontally by 5 cm. The odd numbered

rows (row 1 being the first row of pins from the top of the Galton Box) will have 10 pins, the even

rows will have 9 pins. The vertical distance between rows is also 10 cm. The distance between the

front and back plane is 20 cm, which is also the depth of each pin. There should be a total of 12 rows

of pins.

http://intra.net.dcs.hull.ac.uk/sites/home/student/default.aspx

figure 1 – Galton Box example

At the top of the box is a launch area for ball to fall. Each ball may drop from any point from this top

area and therefore may take a different route through the box. At the bottom of the box are a

number of exit slots which align with the gaps between the bottom row of pins.

In the initial configuration of the box, a zig-zag of polygons make up the sides of the box, connecting

pins along each edge. A variation to this configuration is to replace each edge polygon with a

deformable net which will react to impacts from the balls as they drop through the box.

Three types of ball will be required, all with a diameter 4 cm, but made from different materials –

metal, wood and rubber. Each material should have a realistic coefficient of elasticity and frictional

coefficient. The mass of a rubber ball should be m grams, a wooden ball 3m/2 grams and the metal

ball 3m grams. The mass of the rubber, wooden, and metal balls should be set from a configuration

file.

Balls, when dropped, will collide with:

1. Pins: Collision detection between a pin and a ball will be needed, together with a collision

response.

2. Balls: One ball may collide with another. This must be detected and dependent upon their

materials, a suitable collision response calculated.

3. Front and back face: A collision detection/response is required between a ball and plane face.

4. Edge polygon: Similar to 3 but the polygons are angled. Friction should be considered.

5. Deformable nets: Collision detection between a ball and the deformable nets is required.

Under impact the mesh should deform and the ball react appropriately

6. Exit slots: The exit slot taken by the ball should be recorded and for each slot the accumulation

of balls passing through it should be recorded.

3.0 Implementation

The simulation should be implemented in C++ and OpenGL/gxBase.

The Galton Box should be implemented on two PCs, the top half of the box should be on PC 1 (the

emitter and the top 6 rows of pins) and the bottom half on PC 2 (bottom 6 rows of pins and the exit

slots). Balls should fall from one machine to the other but equally, balls should be able to bounce back

onto PC 1.

The graphical representation of the box should be a full 3D perspective view which can be rotated by

use of the mouse. The +/- keys should alter the rate that balls are dispatched from the top of the box,

ranging from 1 to at least 100 balls falling through the system at any instant of time. Balls should be

textured/coloured differently to differentiate between metal, wood and rubber. Key 1 should select

all metal balls, key 2 all wooded balls, key 3 all rubber balls and key 4 should select a random selection

of the three type of ball.

As balls fall through a slot they disappear, but below each slot you should indicate the number of balls

that have fallen through the slot since the start of the simulation – this may either be graphical or

numerical. You should also display the difference between the number of balls emitted from the top

and the total number of balls that have fallen through slots at the bottom. In this way it will be clear

how many balls have escaped the system due to problems with collision detection or have become

stuck as they pass down the box. Key ‘m’ should toggle between the flat solid edge polygons and the

deformable nets.

Key ‘s’ should toggle the simulation between running and paused. Key ‘x’ should halt the simulation

and exit. When paused, the user should still be able to rotate the scene and zoom in and out using the

‘<’ and ’>’ keys.

The ‘space’ bar should be used to toggle between real-time simulation and 1/10 time simulation.

1/10 time simulation, where time passes 10 time slower than normal, is included to allow for better

observation of collision detection and responses within your system.

4.0 Physics

The initial implementation can assume that the balls act like particles, allowing you to ignore spin in

your calculations. However, further marks will be awarded if you include spin and inertia in your final

implementation. Elasticity should be included in all reactions and further marks will be awarded if

friction is also included. It is suggested that a spring/dashpot approach is used for the nets at the side

of the box.

5.0 Threading

The simulation should be implemented across the 4 CPU cores on the games lab PCs.

 Core 1: Graphics, UI, networking

 Core 2: Physics (including collision detection, response, and net)

 Core 3: Physics (including collision detection, response, and net)

 Core 4: Physics (including collision detection, response, and net)

Cores 2 to 4 should be load balanced to ensure equal distribution of load. To demonstrate the

effectiveness of the load balancing, a graphical output of the CPU’s idle time is required. The output

should show the percentage of Idle time (Y axis) plotted against time (X axis), across each CPU,

updated once per frame. Use the system clock to determine the ideal time for each core.

Only the Win32 threading library is permitted

6.0 Networking

The simulation is to be split across two PCs using a peer to peer network configuration. Each PC runs

identical simulation software, including graphics, UI, networking and physics. Balls are released on the

1st PC, and travel through the Galton Box. Upon reaching the halfway point (as described above) the

ball details are transferred to the 2nd PC where the simulation continues. As noted above, it is possible

for balls to bounce back from the 2nd PC to the 1st PC.

Fault tolerance is to be provided on the network connection. If the connection is broken, the 1st PC

will record the balls as leaving, but they will not be transferred to the 2nd PC. Once the connection is

re-established the simulation will continue and balls will once again be transferred. Balls that failed to

transfer are lost and recorded as such.

Only the winsock networking library is permitted

7.0 Report Details

Threading / Distribution

o A diagram of the system architecture, clearly showing the major processes within the

implementation and how they are mapped to threads, cores and multiple PCs.

o A short explanation of the strategy employed to manage the interactions between the

multi-threaded physics code and the ball database. The explanation should include a

critique of the effectiveness of your approach and the lessons learnt from this

implementation. [Maximum 2 pages, including diagrams]

Simulation

o A short explanation of the collision detection and response algorithm that you have
employed for ball collision with a cylindrical pin. Your description should include any
mathematical equations that you have employed and you should also include a critique on
the effectiveness of your approach. [Maximum 2 pages, including diagrams]

Marks will be lost if you exceed page limits (see handbook for Over length penalties)

