How To Write Shared Libraries

Ulrich Drepper

Red Hat, Inc.
drepper@redhat.com

February 8, 2004

Abstract

Today, shared libraries are ubiquitous. Developers use them for multiple reasons and create
them just as they would create application code. This is a problem, though, since on many
platforms some additional techniques must be applied even to generate decent code. Even more
knowledge is needed to generate optimized code. This paper introduces the required rules and
techniques. In addition, itintroduces the concept of ABI (Application Binary Interface) stability
and shows how to manage it.

1 Preface a.out . The main accepted limitation was that redoca-
tionsare performed at the time of loading and afterward.

For a long time, programmers collected commonly usedThe shared I_|brar|es have to_e>_<|st in the fo”‘? they are
sed at run-time on disk. This imposes a major restric-

code in libraries so that code could be reused. This save"é) .)
n on the way shared libraries are built and used: every

development time and reduces errors since reused cod : : : I
only has to be debugged once. With systems runnin% ared library must have a fixed load address; otherwise it

dozens or hundreds of processes at the same time reu guld not be possible to generate shared libraries which
of the code at link-time solves only part of the problem. 0 not have 10 be relocated.

Many processes will use the same pieces of code whic) . .
they import for libraries. With the memory management%e fixed load addresses had to be assigned and this has

systems in modern operating systems it is also possibl p happen without ovgrlaps and conflicts and W'th some
uture safety by allowing growth of the shared library.

to share the code at run-time. This is done by loading the " :
t is therefore necessary to have a central authority for

code into physical memory only once and reusing it in _ NN)
multiple processes via virtual memory. Libraries of this fche assignment of_address ranges .Wh'Ch |n_|tself 'S ama-
kind are called shared libraries. jor problem. But it gets worse: given a Linux system
of today with many hundred of DSOs (Dynamic Shared
The concept is not very new. Operating system designerg)bjects) the address space and the virtual memory avail-

implemented extensions to their system using the infrasélble to_ the appl_lcatlon gets severely fragmented. This
ould limit the size of memory blocks which can be dy-

tructure they used before. The extension to the OS coul

be done transparently for the user. But the parts the usé}amically allocated Whi(.:h WOUId create unsurmountable
directly has to deal with created initially problems. problems for some applications. It would even have hap-
pened by today that the assignment authority ran out of

The main aspect is the binary format. This is the fc)r_address; ranges to assign, at least on 32-bit machines.

mat which is used to describe the application code. LonqN _
. - . e still have not covered all the drawbacks of &heut
gone are the days that it was sufficient to provide a mem- oo ; o . .
: - e shared libraries. Since the applications using shared li-
ory dump. Multi-process systems need to identify differ- raries should not have to bepeelinked after ?:han ing a
ent parts of the file containing the program such as thé) ging

text, data, and debug information parts. For this, binaryShaer library it uses, the entry points, i.e., the function

formats were introduced early on. Commonly used in thef)md variable addresses, must not change. This can only

early Unix-days were formats such asut or COFF. e guaranteed if the entry poi_nts are kept separate from
These binary formats were not designed with shared jithe aptual code since otherwise limits on the.S|ze of a
braries in mind and this clearly shows. fun.ctlon would be harQ—coded. A t_able of functlo_n stubs
which call the actual implementation was used in solu-
tion used on Linux. The static linker got the address of
each function stub from a special file (with the filename
extensionsa). At run-time a file ending inso.X.Y.Z
_ o) was used and it had to correspond to the usedfile.
The binary format used initially for Linux was anout This in turn requires that an allocated entry in the stub

variant. When introducing shared libraries certain designgp)e always had to be used for the same function. The
decisions had to be made to work in the limitations of

1.1 A Little Bit of History

mailto:drepper@redhat.com

allocation of the table had to be carefully taken care of.put into separate DSOs. This can be a very powerful tool,
Introducing a new interface meant appending to the taespecially in the development phase. Instead of relink-
ble. It was never possible to retire a table entry. To avoidng the entire program it is only necessary to relink the
using an old shared library with a program linked with a DSO(s) which changed. This is often much faster.
newer version, some record had to be kept in the applica-

tion: the X andY parts of the name of tho.X.Y.Z Some projects decide to keep many separate DSOs even
suffix was recorded and the dynamic linker made surén the deployment phase even though the DSOs are not
minimum requirements were met. reused in other programs. In many situations it is cer-

tainly a useful thing to do: DSOs can be updated indi-
The benefits of the scheme are that the resulting programidually, reducing the amount of data which has to be
runs very fast. Calling a function in such a shared li-transported. But the number of DSOs must be kept to a
braries is very efficient even for the first call. It can reasonable level. Not all programs do this, though, and
be implemented with only two absolute jumps: the firstwe will see later on why this can be a problem.
from the user code to the stub, and the second from the
stub to the actual code of the function. This is probablyBefore we can start discussing all this some understand-
faster than any other shared library implementation, butng of ELF and its implementation is needed.
its speed comes at too high a price:

1.3 How Is ELF Implemented?
1. acentral assignment of address ranges is needed,;

2. collisions are possible (likely) with catastrophic re- The handling of a statically linked application is very
sults; simple. Such an application has a fixed load address
which the kernel knows. The load process consists sim-
ply of making the binary available in the appropriate ad-
dress space of a newly created process and transferring
For all these reasons and more, Linux converted early Oﬁontrol to the entry point 9f t_he application. Everything
to using ELF (Executable Linkage Format) as the binaryelse was done by the static linker when creating the exe-
format. The ELF format is defined by the generic spec—CUtable‘
ification (gABI) to which processor-specific extensions
(psABI) are added. As it turns out the amortized cost of
function calls is almost the same as toput but the

restrictions are gone.

3. the address space gets severely fragmented.

Dynamically linked binaries, in contrast, are not com-

plete when they are loaded from disk. It is therefore
not possible for the kernel to immediately transfer con-
trol to the application. Instead some other helper pro-
1.2 The Move To ELF gram, which obviously has to be complete, is loaded as
well. This helper program is thdynamic linker The task

of the dynamic linker is it to complete the dynamically

For programmers the main advantage of the switch tdnked application by loading the DSOs it needs (the de-
ELF was that creating ELF shared libraries, or in ELF- pendencies) and to perform the relocations. Then finally
speak Dynamic Shared Objects (DSOs), becomes ver§PNtrol can be transferred to the program.

easy. The only difference between generating an appli- . . oo)

cation and a DSO is in the final link command line. OneThls is not the last task for the dynamic linker in most
additional option{shared in the case of GNU Id) tells C&S€S; though. ELF allows the relocations associated with
the linker to generate a DSO instead of an application@ SYMPOl to be delayed until the symbol is needed. This
the latter being the default. In fact, DSOs are little morelazy relocation scheme is optional, and optimizations dis-
than a special kind of binary; the difference is that theycussed below for relocations performed at startup imme-

have no fixed load address and hence require the dynamﬂfately effect the lazy relocations as well. So we ignore
linker to actually become executable.

in the following everything after the startup is finished.

This, together with the introduction of GNU Libtool which 1.4~ Startup: In The Kernel

will be described later, has led to the wide adoption of

DSOs by programmers. Proper use of DSOs can help

save large amounts of resources. But some rules must t&&tarting execution of a program begins in the kernel, nor-

followed to get any benefits, and some more rules have tmally in theexecve system call. The currently executed

be followed to get optimal results. Explaining these rulescode is replaced with a new program. This means the ad-

will be the topic of a large portion of this paper. dress space content is replaced by the content of the file
containing the program. This does not happen by sim-

Not all uses of DSOs are for the purpose of saving reply mapping (usingnmap the content of the file. ELF

sources. DSOs are today also often used as a way tiles are structured and there are normally at least three

structure programs. Different parts of the program aredifferent kinds of regions in the file:

2 Version 1.9 How To Write Shared Libraries

typedef struct typedef struct

{
Elf32 Word p_type; Elf64 _Word p_type;
Elf32 _Off p _offset; Elf64 Word p_flags;
EIf32 _Addr p _vaddr; Elf64 _Off p _offset;
ElIf32 _Addr p _paddr; EIf64 _Addr p _vaddr;
Elf32 Word p_filesz; Elf64 _Addr p _paddr;
Elf32 Word p_memsz; Elf64 _Xword p filesz;
Elf32 Word p_flags; Elf64 Xword p_memsz;
Elf32 Word p_align; Elf64 Xword p _align;

} EIf32 _Phdr; } EIf64 _Phdr;

Figure 1: ELF Program Header C Data Structure

e Code which is executed,; this region is normally not andp_memszfields specifies where the segment is located
writable; in the the process’ virtual address space and how large
the memory region is. The value of the fheaddr field
itself is not necessarily required to be the final load ad-
dress. DSOs can be loaded at arbitrary addresses in the
« Data which is not used at run-time; since not neededirtual address space. But the relative position of the seg-
it should not be loaded at startup. ments is important. For pre-linked DSOs the actual value
of thep_vaddr field is meaningful: it specifies the ad-
dress for which the DSO was prelinked. But even this
Modern operating systems and processors can protect mgoes not mean the dynamic linker cannot ignore this in-
ory regions to allow and disallow reading, writing, and formation if necessary.
executing separately for each page of merﬁbryt is
preferable to mark as many pages as possible not writabl€he size in the file can be smaller than the address space
since this means that the pages can be shared betwegnakes up in memory. The firgtfilesz bytes of the
processes which use the same application or DSO thenemory region are initialized from the data of the seg-
page is from. Write protection also helps to detect andment in the file, the difference is initialized with zero.
prevent unintentional or malignant modifications of dataThis can be used to handle BSS secffbrsections for
or even code. uninitialized variables which are according to the C stan-
dard initialized with zero. Handling uninitialized vari-
For the kernel to find the different regions, or segmentsables this way has the advantage that the file size can be
in ELF-speak, and their access permissions, the ELF fileeduced since no initialization value has to be stored, no
format defines a table which contains just this informa-data has to be copied from dist to memory, and the mem-
tion, among other things. The ELF Program Header ta-ory provided by the OS via th@mapinterface is already
ble, as it is called, must be present in every executablinitialized with zero.
and DSO. It is represented by the C tyf82 _Phdr
andElfé4 _Phdr which are defined as can be seen in fig-Thep_flags finally tells the kernel what permissions to
ured. use for the memory pages. This field is a bitmap with the
bits given in the following table being defined. The flags
To locate the program header data structure another datae directly mapped to the flagsnapunderstands.
structure is needed, the ELF Header. The ELF header is
the only data structure which has a fixed place in the file,
starting at offset zero. Its C data structure can be seen

o Data which is modified; this region is normally not
executable;

in figure[2. Thee_phoff field specifies where, counting Eiligs \1/alue r;ggiliglzc E:cc:lzlglggrmission
from the beginning of the file, the program header tabl - . —
starts. Thes_phnum field contains the number of entries PFW 2 PROTWRITE | Write Perml_sspn

in the program header table and thghentsize field PFR 4 PROTREAD | Read Permission

contains the size of each entry. This last value is useful

only as a run-time consistency check for the binary. After mapping all thePT_LOADsegments using the ap-
propriate permissions and the specified address, or after

The different segments are represented by the programeely allocating an address for dynamic objects which

header entries with treT_LOADvalue inthep_type field. hayve no fixed load address, the next phase can start. The

Thep_offset andp filesz fields specify where inthe yirtyal address space of the dynamically linked executable
file the segment starts and how long it is. Theaddr

2A BSS section contains only NUL bytes. Therefore they do not

1A memory page is the smallest entity the memory subsystem ofhave to be represented in the file on the storage medium. The loader
the OS operates on. The size of a page can vary between differefust has to know the size so that it can allocate memory large enough
architectures and even within systems using the same architecture. and fill it with NUL

Ulrich Drepper Version 1.9 3

typedef struct typedef struct

{ {
unsigned char e _ident[El _NIDENT]; unsigned char e _ident[El _NIDENT];
Elf32 _Half e _type; Elf64 _Half e _type;
Elf32 _Half e _machine; Elf64 _Half e _machine;
Elf32 _Word e_version; Elf64 _Word e_version;
EIf32 _Addr e _entry; Elf64 _Addr e _entry;
Elf32 _Off e _phoff; Elf64 _Off e _phoff;
Elf32 _Off e _shoff; Elf64 _Off e _shoff;
ElIf32 _Word e_flags; Elf64 _Word e_flags;
Elf32 _Half e _ehsize; Elf64 _Half e _ehsize;
Elf32 _Half e _phentsize; Elf64 _Half e _phentsize;
ElIf32 _Half e _phnum; Elf64 _Half e _phnum;
Elf32 _Half e _shentsize; Elf64 _Half e _shentsize;
Elf32 _Half e _shnum; Elf64 _Half e _shnum;
Elf32 _Half e _shstrndx; Elf64 _Half e _shstrndx;

} EIf32 _Ehdr; } EIf64 _Ehdr;

Figure 2: ELF Header C Data Structure

itself is set up. But the binary is not complete. The ker-ELF header of the dynamic linker.

nel has to get the dynamic linker to do the rest and for

this it has to be loaded in the same way as the executable.5 Startup in the Dynamic Linker

itself (i.e., look for the loadable segments in the program

header). The difference is that the dynamic linker itself

must be complete. The second phase of the program startup happens in the
dynamic linker. Its tasks include:

Which binary implements the dynamic linker is not hard-

coded in the kernel. Instead the program header of the

application contains an entry with the t&J_INTERP. e Determine and load dependencies;

The p_offset field of this entry contains the offset of

a NUL-terminated string which specifies the file name of

this file. The only requirement on the named file is that

its load address does not conflict with the load address of

any possible executable it might be used with. In gen-

eral this means that the dynamic linker has no fixed load

address and can be loaded anywhere; this is just what dyp, the following we will discuss in more detail only the

namic binaries allow. relocation handling. For the other two points the way

o) for better performance is clear: have fewer dependencies.
Once the dynamic linker has also been mapped into thg 5. participating object is initialized exactly once but
memory of the stillborn process we can start the dynamic,me topological sorting has to happen. The identify and
linker. Note it is not the entry point of the application o |54 process also scales with the number dependencies:
which control is transfered to. Only the dynamic linker is i, ot @@ll?) implementations this is not only a linear
ready to run. Instead of calling the dynamic linker right .\ thy
away, one more step is performed. The dynamic linker
somehow has to be told where the application can bere relocation process is normffiithe most expensive
found and where control has to be transferred to once thBart of the dynamic linker's work. Itis a process which is
application is complete. For this a structu_red way eXiStSasymptotically atleasd(R +nr) whereR is the number
The kernel puts an array of tag-value pairs on the stacky ye|ative relocations; is the number of named reloca-
of the new process. Thiguxiliary vectorcontains be- ions, andn is the number of participating DSOs (plus
side the two aforementioned values several more valueg,e main executable). Deficiencies in the ELF hash ta-
which allow the dynamic linker to avoid several systempq fynction and various ELF extensions modifying the
calls. Theelfth header file defines a number of con- gympo jookup functionality may well increase the factor
stants with aT. prefix. These are the tags for the entries;, O(R + rnlog s) wheres is the number of symbols.
in the auxiliary vector. This should make clear that for improved performance

) N o it is significant to reduce the number if relocations and
After setting up the auxiliary vector the kernel is finally symbols as much as possible. We will after explaining
ready to transfer control to the dynamic linker in user

mode. The entry point is defined énentry field of the ®We ignore the pre-linking support here which in many cases can
reduce significantly or even eliminate the relocation costs.

¢ Relocate the application and all dependencies;

e Initialize the application and dependencies in the
correct order.

4 Version 1.9 How To Write Shared Libraries

the relocation process do some estimates for actual nuni-5.2 Symbol Relocations
bers.

The dynamic linker has to perform a relocation for all
symbols which are used at run-time and which are not
known at link-time to be defined in the same object as the

Relocation in this context means adjusting the applicaréference. Due to the way code is generated on some ar-
tion and the DSOs loaded as the dependencies for thefihitectures it is possible to delay the processing of some

own and all other load addresses. There are two kinds dflocations until the references in question are actually
dependencies: used. This is on many architectures the case for calls

to functions. All other kinds of relocations always have
.]] to be processed before the object can be used. We will
» Dependencies to locations which are known to bejgnore thelazy relocation processingince this is just a
in the own object. These are not associated with gnethod to delay the work. It eventually has to be done
specific symbol since the linker knows the relative ang so we will include it in our cost analysis. To actu-
position of the location in the object. ally perform all the relocations before using the object is
Note that applications do not have relative reloca-used by setting the environment variabizBIND_NOWO
tions since the load address of the code is knowra non-empty value. Lazy relocation can be disabled for
at link-time and therefore the static linker is able to an individual object by adding the now option to the
perform the relocation. linker command line. The linker will set thz= BIND_NOW
flag in the DT.FLAGS entry of the dynamic section to
ark the DSO. This setting cannot be undone without
relinking the DSOs, though, so this option should only
be used if it is really wanted.

1.5.1 The Relocation Process

e Dependencies based on symbols. The reference
the definition is generally, but not necessarily, in a
different object than the definition.

The implementation of relative relocations is easy. TheThe actual lookup process is repeated from start for each
linker can compute the offset of the target destination insymbol relocation in each loaded object. Note that there
the object file at link-time. To this value the dynamic can be many references to the same symbol in different
linker only has to add the load address of the object an@bjects. The result of the lookup can be different for each
store the result in the place indicated by the relocation. Aef the objects so there can be no short cuts except for
runtime the dynamic linker has to spend only a very smalicaching results for a symbol in each object in case more

and constant amount of time which does not increase ithan one relocation references the symbol. Tdukup
more DSOs are used. scopementioned in the steps below is an ordered list of

most loaded objects which can be different for each ob-
The relocation based on a symbol is much more compliject itself. The way the scope is computed is quite com-
cated. The ELF symbol resolution process was designefilex and not really relevant here so we refer the inter-
very powerful so that it can handle many different prob- ested reader to the ELF specification. Important is that
lems. All this powerful functionality adds to the com- the length of the scope is normally directly dependent
plexity and run-time costs, though. Readers of the fol-on the number of loaded objects. This is another factor
lowing description might question the decisions whichwhere reducing the number of loaded objects is increas-
led to this process. We cannot argue about this here; read?g performance.
ers are referred to discussions of ELF. Fact is that symbol
relocation is a costly process and the more DSOs particThe lookup process for one symbol proceeds in the fol-
ipate or the more symbols are defined in the DSOs, théowing steps:
longer the symbol lookup takes.

The result of any relocation will be stored somewhere 1. Determine the hash value for the symbol name.

in the object with the reference. Ideally and generally 5 | the first/next object in the lookup scope:
the target location is in the data segment. If code is in-

correctly generated by the user, compiler, or linker relo- 2.a Determine the hash bucket for the symbol us-
cations might modify text or read-only segments. The ing the hash value and the hash table size in
dynamic linker will handle this correctly if the object is the object.

marked, as required by the ELF specification, with the 2.b Get the name offset of the symbol and using
DF.TEXTRELset in theDT_FLAGSentry of the dynamic it as the NUL-terminated name.

section (or the existence of tiEr TEXTRELflag in old

binaries). But the result is that the modified page can- 2.c Compare the symbol name with the reloca-

not be shared with other processes using the same object. tion name.

The modification process itself is also quite slow since 2.d Ifthe names match, compare the version names
the kernel has to reorganize the memory handling data as well. This only has to happen if both, the
structures quite a bit. reference and the definition, are versioned. It

Ulrich Drepper Version 1.9 5

Histogram for bucket list length in section [2] '.hash’ (total of 1023 buckets):
Addr: 0x42000114 Offset: 0x000114 Link to section: [3] ’.dynsym’
Length Number % of total Coverage

0 132 12.9%

1 310 30.3% 15.3%
2 256 25.0% 40.6%
3 172 16.8% 66.0%
4 92 9.0% 84.2%
5 46 4.5% 95.5%
6 14 1.4% 99.7%
7 1 0.1% 100.0%

Average number of tests: successful lookup: 1.994080
unsuccessful lookup: 1.981427

Figure 3: Example Output foradelf -1 libc.so

Histogram for bucket list length in section [2] '.hash’ (total of 191 buckets):
Addr: 0x00000114 Offset: 0x000114 Link to section: [3] '.dynsym’
Length Number % of total Coverage

0 103 53.9%

1 71 37.2% 67.0%
2 16 8.4% 97.2%
3 1 0.5% 100.0%

Average number of tests: successful lookup: 1.179245
unsuccessful lookup: 0.554974

Figure 4: Example Output foeadelf -I libnss _files.so

requires a string comparison, too. If the ver- mance of each lookup depends among other factors on
sion name matches or no such comparisorthe length of the hash chains and the number of objects
is performed, we found the definition we are in the lookup scope. These are the two loops described
looking for. above. The lengths of the hash chains depend on the
2.e If the definition does not match, retry with the number of symbols and the choice of the hash table size.
next element in the chain for the hash bucket. Since the hash function used in the initial step of the algo-
) _ rithm must never change these are the only two remaining
2.f It the chain does not contain any further ele-,, japies. Many linkers do not put special emphasis on
ment there is no deflnltl_on in the curre_nt Ok,)' selecting an appropriate table size. The GNU linker tries
ject and we proceed with the next object in to optimize the hash table size for minimal lengths of the

the lookup scope. chains if it gets passed th@ option (note: the linkemot
3. If there is no further object in the lookup scope thethe compiler, needs to get this option).
lookup failed.

A note on the current implementation of the hash table opti-
mization. The GNU binutils linker has a simple minded heuris-
Note that there is no problem if the scope contains moreic which often favors small table sizes over short chain length.
than one definition of the same symbol. The symbolFor large projects this might very wéticreasethe startup costs.
lookup algorithm simply picks up the first definition it The overall memory consumption will be sometimes signifi-
finds. This has some perhaps surprising consequencesantly reduces which might compensate sooner or later but it
Assume DSO ‘A defines and references an interface andb still advised to check the effectiveness of the optimization.
DSO ‘B’ defines the same interface. If now ‘B’ pre- A new linker implementation is going to be developed and it
cedes ‘A in the scope the reference in ‘A’ will be satis- contains a better algorithm.
fied by the definition in ‘B’. It is said that the definition in
‘B’ interposes the definition in ‘A’. This concept is very To measure the effectiveness of the hashing two numbers
powerful since it allows more specialized implementationare important:
of an interface to be used without replacing the general
code. One example for this mechanism is the use of the
LD_PRELOADfunctionality of the dynamic linker where

additional DSOs which were not present at link-time are § The average chain length for an unsuccessful lookup.
introduced in run-time.

e The average chain length for a successful lookup.

Looking at the algorithm it can be seen that the perfor-It might be surprising to talk about unsuccessful lookups

6 Version 1.9 How To Write Shared Libraries

__Q214some_namespace22some_longer_class_namei
the_getter_function__Q214some_namespace22some_longer_class_name

Figure 5: Mangled names using pre-gcc 3 scheme

_ZN14some_namespace22some_longer_class_nameC1Ei
_ZN14some_namespace22some_longer_class_namel9the_getter_functionEv

Figure 6: Mangled names using the common C++ ABI scheme

ada__calendar__delays___ elabb
ada__calendar__delays__timed_delay_nt
ada__calendar__delays__to_duration

Figure 7: Names from the standard Ada library

here but in fact they are the rule. Note that “unsuccesseommon prefixes. Unfortunately this is not uncommon.
ful” means only unsuccessful in the current objects. Only
for objects which implement almost everything they get
looked in for is the successful lookup number more im-

. . class some_longer_class_name {
portant. In this category there are basically only two ob- int member variable;
jects on a Linux system: the C library and the dynamic public: -
linker itself. some_longer_class_name (int p);

int the_getter_function (void);

namespace some_namespace {

Some versions of theadelf program compute the value };
directly and the output is similar to figurgp 3 drjd 4. The}
data in these examples shows us a number of things. Based
on the number of symbols (2027 versus 106) the chose
table size is radically different. For the smaller table the
linker can afford to “waste” 53.9% of the hash table en-
tries which contain no data. That's only 412 bytes on
a gABIl-compliant system. If the same amount of over-
head would be allowed for thibc.so binary the table
would be 4 kilobytes or more larger. That is a big dif-
ference. The linker has a fixed cost function integrate
which takes the table size into account.

l‘Ilhe name mangling scheme used by the GNU C++ com-
piler before version 3.0 used a mangling scheme which
put the name of a class member first along with a descrip-
tion of the parameter list and following it the other parts

of the name such as hamespaces and nested class names.
The result is a name which distinguishable in the begin-
dﬂng if the member names are different. For the example
above the mangled names for the two members functions
look like this figurd 5.

The increased relative table size means we have signifi- th i h din today’ .
cantly shorter hash chains. This is especially true for th h the hew mangling scheme used in today s gce versions

average chain length for an unsuccessful lookup. The av"f‘nd all otgi:cfg:;zgers which ?re:-[cg)t?;t)r?tlble with the

erage for the small table is only 28% of that of the IargeCommon € hames start wi € hamespaces

table. and class names and end with the member names. Fig-
uref@ shows the result for the little example. The mangled

What these numbers should show is the effect of reduch@mes for the two member functions differs only after the

ing the number of symbols in the dynamic symbol ta- 434 character. This is rgally bad performance-wise if the
ble. With significantly fewer symbols the linker has a WO Symbols should fall into the same hash bufket.

much better chance to counter the effects of the subopti- - .
mal hashing function, Ada has similar problems. The standard Ada library for

gcc has all symbols prefixed witlda _, then the pack-
age and sub-package names, followed by function name.
Figure T shows a short excerpt of the list of symbols from
Hﬁe library. The first 23 character are the same for all the

Another factor in the cost of the lookup algorithm is con-
nected with the strings themselves. Simple string com
parison is used on the symbol names which are store
in a string table associated with the symbol table datd'2Mes:
structures. Strings are stored in the C-format; they ar
terminated by a NUL byte and no initial length field is
used. This means string comparisons has to proceed until “Some people suggested “Why not search from the back?”. Think
a non-matching character is found or until the end of theabout it, these are C strings, not PASCAL strings. We do not know the

. length and therefore would have to read every single character of the
string. This approach is susceptible to long strings Wlthstring to determine the length. The result would be worse.

eI'he length of the strings in both mangling schemes is

Ulrich Drepper Version 1.9 7

worrisome since each string has to be compared conmmainder of the text we will introduce methods to do just
pletely when the symbol itself is searched for. The nameshat. So far to remember: pas®l to the linker to gener-
in the example are not extra ordinarily long either. Look- ate the final product.

ing through the standard C++ library one can find many

names longer than 120 characters and even this is notthes.3 |ookup Scope

longest. Other system libraries feature names longer than

200 characters and complicated, “well designed” C++)
projects with many namespaces, templates, and nesté—d‘e lookup scope has so far been described as an ordered

classes can feature names with more than 1.000 charaliSt of most loaded object. While this is correct it has also

ters. One plus point for design, but minus 100 points for?€en intentionally vague. It is now time to explain the
performance. lookup scope in more detail.

With the knowledge of the hashing function and the de-TN€ lookup scope consists in fact of up to three parts.
tails of the string lookup let us look at a real-world exam- The main part is the global lookup scope. It initially

ple: OpenOffice.org. The package contains 144 separa@nSiStS of the executable itself and all its dependencies.
DSOs. During startup about 20,000 relocations are per]’he dependencies are added in breadth-first order. That
formed. The number of string comparisons needed durMéans first the dependencies of the executable are added

ing the symbol resolution can be used as a fair value fof the order of theiDT NEEDEentries in the executable’s

the startup overhead. We compute an approximation ofynamic section. Then the dependencies of the first de-

this value now. pendency are added in the same fashion. DSOs already
loaded are skipped; they do not appear more than once

The average chain length for unsuccessful lookup in alPn the list. The process continues recursively and it will

DSOs of the OpenOffice.org 1.0 release on 1A-32 is 1.193H0P at some_point since there are only a limited number
This means for each symbol lookup the dynamic linkerof DSOs available. The exact number of DSOs loaded

has to perform on average x 1.1931 = 85.9032 string this way can vary widely. Some executables depend on
comparisons. For 20,000 symbols the total is 1,718,06#Nly two DSOs, others on 200.

string comparisons. The average length of an exported

symbol defined in the DSOs of OpenOffice.orgis13. T an executable has theF SYMBOLICflag set (see sec-
Even if we are assuming that only 20% of the string istioN[2.2.8) the object with the reference is added in front
searched before finding a mismatch (which is an opti-f the global lookup scope. Note, only the object with
mistic guess since every symbol name is compared con’F—r_‘e reference itself is added in front: noF its depenglen-
pletely at least once to match itself) this would mean a to-C1€S- The effects and reasons for this will be explained
tal of more then 18.5 million characters have to be loadedat€"-

from memory and compared. No wonder that the startup . o
is so slow, especially since we ignored other costs. A more complicated modification of thg lookup scope
happens when DSOs are loaded dynamic usiogen .

To compute number of lookups the dynamic linker per-!f @ DSO is dynamically loaded it brings in its own set
forms one can use the help of the dynamic linker. If theOf dependencies which might have to be searched. These
environment variablé.D DEBUGHS set tosymbols one objects, starting with the one which was requested in the

only has to count the number of lines which start with dlopen call, are appended to the lookup scope if the
symbol= . It is best to redirect the dynamic linker's out- Object with the reference is among those objects which

put into a file with LD.DEBUGOUTPUT The number of have been loaded bjfopen . That means, those objects
string comparisons can then be estimate by multiplying?® not added to the global lookup scope and they are
the count with the average hash chain length. Since thBOt searched for normal lookups. This third part of the
collected output contains the name of the file which is/00kup scope, we will call it local lookup scope, is there-
looked at it would even be possible to get more accuratdr® dependent on the object which has the reference.
results by multiplying with the exact hash chain length

for the object. The behavior otilopen can be changed, though. If the

function gets passed tHRTLD.GLOBALflag, the loaded
Changing any of the factors ‘number of exported Sym_object and .aII_the dependenciase added to the global _
bols’, ‘length of the symbol strings’, ‘number and length SCOPe. This is usually a very bad idea. The dynami-
of common prefixes’, number of DSOs’, and ‘hash table ¢@lly 2dded objects can be removed and when this hap-
size optimization’ can reduce the costs dramatically. InP€nS the lookups of all other objects is influenced. The
general the percentage spent on relocations of the tim@ntire global lookup scope is searched before the dynam-
the dynamic linker uses during startup is around 50-7004c@lly loaded object and its dependencies so that defini-
if the binary is already in the file system cache, and aboufions would be found first in the global lookup scope ob-
20-30% if the file has to be loaded from dBktis there- 1€ct before definitions in the local lookup scope. If the

fore worth spending time on these issues and in the redynamic linker does the lookup as part of a relocation
this additional dependency is usually taken care of auto-

5These numbers assume pre-linking is not used. matically, but this cannot be arranged if the user looks up

8 Version 1.9 How To Write Shared Libraries

symbols in the lookup scope witlisym . value @oebx) is known at link-time. Therefore the text
segment does not have to be changed, only the @OT.
And usually there is no reason to URELD.GLOBAL For
reasons explained later it is always highly advised to creThe situation for the function call is similar. The function
ate dependencies with all the DSOs necessary to resolver is not called directly. Instead control is transferred
all referencesRTLD.GLOBALIs often used to provide im- to a stub foar in the PLT (indicated bypar@PLT). For
plementations which are not available at link time of alA-32 the PLT itself does not have to be modified and can
DSO. Since this should be avoided the need for this flaghe placed in a read-only segment, each entry is 16 bytes
should be minimal. Even if the programmer has to jumpin size. Only the GOT is modified and each entry consists
through some hoops to work around the issues which aref 4 bytes. The structure of the PLT in an 1A-32 DSO
solved byRTLD.GLOBALIt is worth it. The pain of debug- looks like this:
ging and working around problems introduced by adding

objects to the global lookup scope is much bigger.
.PLTO:pushl 4(%ebx)

jmp *8(%ebx)

nop; nop

nop; nop

The Global Offset Table (GOT) and Procedure Linkage -P-THmp *namel@GOT(%ebx)
Table (PLT) are the two data structures central to the ELF Pusm Soffsetl

run-time. We will introduce now the reasons why they imp .PLTO@PC

. .PLT2:;jmp *name2@GOT(%ebx
are used and what consequences arise from that. : p%sm $Oﬁ£’)tz (Yeeb)

jmp .PLTO@PC

154 GOT and PLT

Relocations are created for source constructs like

This shows three entries, there are as many as needed,
all having the same size. The first entry, labeled with
)) .PLTO, is special. It is used internally as we will see.
int call_bar (void) { . . .
retum bar (foo); All the foIIowmg er_ltnes b(_elon.g to gxa_ctly one function
} symbol. The first instruction is an indirect jump where
the address is taken from a slot in the GOT. Each PLT en-
try has one GOT slot. At startup time the dynamic linker
The call tobar requires two relocations: one to load the fills the GOT slot with the address pointing to the sec-
value offoo and another one to find the addresdaf. ond instruction of the appropriate PLT entry. l.e., when
If the code would be generated knowing the addresses ¢he PLT entry is used for the first time the jump ends at
the variable and the function the assembler instructionghe following pushl instruction. The value pushed on
would directly load from or jump to the address. For IA- the stack is also specific to the PLT slot and it is the off-
32 the code would look like this: set of the relocation entry for the function which should
be called. Then control is transferred to the special first
PLT entry which pushes some more values on the stack
pushl foo and finally jumps into the dynamic linker. The dynamic
call bar linker has do make sure that the third GOT slot (offset
8) contains the address of the entry point in the dynamic
linker. Once the dynamic linker has determined the ad-

This med en_codg the addressesaf andbar as part . dress of the function it stores the result in the GOT entry
of the instruction in the text segment. If the address is

g which was used in thinp instruction at the beginning of
only known to the dynamic linker the text segment would
have to be modified at run-time. According to what Wethe PLT entry before jumping to the found function. This

learned above this must be avoided has the effect that all future uses of the PLT entry will not
' go through the dynamic linker, but will instead directly
ntransfer to the function. The overhead for all but the first
€all is therefore “only” one indirect jump.

extern int foo;
extern int bar (int);

Therefore the code generated for DSOs, i.e., when usi
-fpic or-fPIC , looks like this:

The PLT stub is always used if the function is not guaran-

movl foo@GOT(%ebx), %eax teed to be defined in the object which references it. Please
pushl (%eax) note that a simple definition in the object with the refer-
call bar@PLT ence is not enough to avoid the PLT entry. Looking at

the symbol lookup process it should be clear that the def-

))) 5 - . . .)
The address of the variabieo is now not part of the in- . There is one more advantage of using this schgme. If the instruc
tion would be modified we would need one relocation per load/store

struction. |n_5tea_d itis loaded from the GOT. The adqres%struction. By storing the address in the GOT only one relocation is
of the location in the GOT relative to the PIC register needed.

Ulrich Drepper Version 1.9 9

inition could be found in another object (interposition) So we have again a cost factor which is directly depend-
in which case the PLT is needed. We will later explaining on the number of objects involved. Reducing the
exactly when and how to avoid PLT entries. number helps a bit even though the actual costs are nor-
mally much less than that of the relocation process.
How exactly the GOT and PLT is structured is architecture-
specific. What was said here about IA-32 is in some formAt this point it is useful to look at the way to correctly
applicable to some other architectures but not for all. Fomwrite constructors and destructors for DSOs. Some sys-
instance, while the PLT on 1A-32 is read-only it must be tems had the convention that exported functions named
writable for other architectures since instead of indirectinit and_fini are automatically picked as constructor
jumps using GOT values the PLT entries are modifiedand destructor respectively. This convention is still fol-
directly. We can anyhow summarize the costs of usingowed by GNU Id and using functions with these names
GOT and PLT like this: on a Linux system will indeed cause the functions used
in these capacities. But this is totally, 100% wrong!

e every use of a global variable which is exported By using these functions the programmer overwrites what-
uses a GOT entry and loads the variable values inever initialization and destruction functionality the sys-
directly; tem itself is using. The result is a DSO which is not

fully initialized and this sooner or later leads to a catas-

e each function which is called (as opposed to refer-rophy. The correct way of adding constructors and de-
enced as a variable) which is not guaranteed to b&tructors is by marking functions with tleenstructor

defined in the calling object requires a PLT entry. anddestructor ~ function attribute respectively.
The function call is performed indirectly by trans-

ferring control first to the code in the PLT entry

which in turn calls the function. void

__attribute ((constructor))

e for some architectures each PLT entry requires ai'{”it—f“mtion (void)

least one GOT entry.
}

Avoiding a jump through the PLT therefore removes on,,qig

IA-32 16 bytes of text and 4 bytes of data. Avoiding the attribute ((destructor))
GOT when accessing a global variable saves 4 bytes afni_function (void)

data and one load instruction (i.e., at least 3 bytes of codé

and cycles during the execution). In addition each GOT

entry has a relocation associated with the costs describéd

above.

These functions should not be exported either (see sec-
1.5.5 Running the Constructors tior2.2.2) but this is just an optimization. With the func-
tions defined like this the runtime will arrange that they

. are called at the right time, after performing whatever ini-
Once the relocations are performed the DSOs and the apr,jization is necessary before.

plication code can actually be used. But there is one more

thing to do: optionally the DSOs and the application must] 6 Summary of the Costs of ELF

be initialized. The author of the code can define for each

object a number of initialization functions which are run

before the DSO is used by other code. To perform the ini\Ve have now discussed the startup process and how it is
tialization the functions can use code from the own objeciaffected by the form of the binaries. We will now summa-
and all the dependencies. To make this work the dynamigize the various factors so that we later on can determine
linker must make sure the objects are initialized in thethe benefits of an optimization more easily.

correct order, i.e., the dependencies of an object must be

initialized before the object. . . .
Code Size As everywhere, a reduced size for code with

To guarantee that the dynamic linker has to perform a the same semantics often means higher efficiency
topological sort in the list of objects. This sorting is no and performance. Smaller ELF binaries need less
linear process. Like all sorting algorithms the run-time is memory at run-time.

at least @n log n) and since this is actually a topological In general the programmer will always generate the
sort the value is even higher. And what is more: since best code possible and we do not cover this further.
the order at startup need not be the same as the order But it must be known that every DSO includes a
at shutdown (when finalizers have to be run) the whole certain overhead in data and code. Therefore fewer
process has to be repeated. DSOs means smaller text.

10 \ersion 1.9 How To Write Shared Libraries

$ env LD_DEBUG=statistics /bin/echo '+++ some text +++

run-time linker statistics:
total startup time in dynamic loader: 748696 clock cycles
time needed for relocation: 378004 clock cycles (50.4%)
number of relocations: 133
number of relocations from cache: 5
time needed to load objects: 193372 clock cycles (25.8%)
+++ some text +++

run-time linker statistics:

final number of relocations: 188
final number of relocations from cache: 5

Figure 8: Gather Startup Statistics

Number of Objects The fact that a smaller number of Additionally, fewer exported symbols means fewer
objects containing the same functionality is bene- chances for conflicts when using pre-linking (not
ficial has been mentioned in several places: covered further).

e Fewer objects are loaded at run-time. This Length of Symbol Strings Long symbol lengths cause

directly translates to fewer system call. In the often unnecessary costs. A successful lookup of a
GNU dynamic linker implementation loading symbol must match the whole string and compar-
a DSO requires 8 system calls, all of them can ing dozens or hundreds of characters takes time.
be potentially quite expensive. Unsuccessful lookups suffer if common prefixes

are long as in the new C++ mangling scheme. In
any case do long symbol names cause large string
tables which must be present at run-time and thereby
is adding costs in load time and in use of address
space which is an issue for 32-bit machines.

¢ Related, the application and the dependencies
with additional dependencies must record the
names of the dependencies. This is not a ter-
ribly high cost but certainly can sum up if
there are many dozens of dependencies.

* The lookup scope grows. This is one of the Number of Relocations Processing relocations constitute
dominating factors in cost equation for the re- the majority of work during start and therefore any
locations. reduction is directly noticeable.

e More objects means more symbol tables which
in turn normally means more duplication. Un- Kind of Relocations The kind of relocations which are

defined references are not collapsed into one needed is important, too, since processing a rela-
and handling of multiple definitions have to tive relocation is much less expensive than a nor-
be sorted out by the dynamic linker. mal relocation. Also, relocations against text seg-

Moreover, symbols are often exported from a ments must be avoided.

DSO to be used in another one. This would
not have to happen ifthe DSOs would be mergB@CGment of Code and DataAll executable code should

be placed in read-only memory and the compiler

e The sorting of initializers/finalizers is more normally makes sure this is done correctly. When

complicated. creating data objects it is mostly up to the user

¢ In general does the dynamic linker have some to make sure it is placed in the correct segment.
overhead for each loaded DSO per process. Ideally data is also read-only but this works only
Every time a new DSO is requested the list of for constants. The second best choice is a zero-
already loaded DSOs must be searched which initialized variable which does not have to be ini-
can be quite time consuming since DSOs can tialized from file content. The rest has to go into
have many aliases. the data segment.

Number of Symbols The number of exported and unde-
fined symbols determines the size of the dynamicln the following we will not cover the first two points
symbol table, the hash table, and the average hasgiven here. It is up to the developer of the DSO to de-
table chain length. The normal symbol table is notcide about this. There are no small additional changes to
used at run-time and it is therefore not necessarynake the DSO behave better, these are fundamental de-
to strip a binary of it. It has no impact on perfor- sign decisions. We have voiced an opinion here, whether
mance. it is has any effect remains to be seen.

Ulrich Drepper Version 1.9 11

1.7 Measuringld.so Performance Itis obviously also possible to count the relocations with-
out running the program. Runningadelf -d on the
binary shows the dynamic section in which theRELSZ
DT.RELENT DT_.RELCOUN;JandDT_PLTRELSZentries are

o . _ interesting. They allow computing the number of normal

To perform the optimizations it is useful to quantify the g relative relocations as well as the number of PLT en-
effect of the optimizations. Fortunately it is very easy 10 yjes. If one does not want to do this by hand téifo
do this with glibc’s dynamic linker. Using theD_ DEBUG script in appendik A can be used.
environment variable it can be instructed to dump in-
formation related to the startup performance. Figyre 8 o
shows an example invocation, of teeho program in 2 Optimizations for DSOs
this case.

In this section we describe various optimizations based
The output of the dynamic linker is divided in two parts. on C or C++ variables or functions. The choice of vari-
The part before the program’s output is printed right be-able or function, unless explicitly said, is made deliber-
fore the dynamic linker turns over control to the appli- ately since many of the implementations apply to the one
cation after having performed all the work we describedor the other. But there are some architectures where func-
in this section. The second part, a summary, is printedions are handled like variables. This is mainly the case
after the application terminated (normally). The actualfor embedded RISC architectures like SH-3 and SH-4
format might vary for different architectures. It includes which have limitations in the addressing modes they pro-
the timing information only on architectures which pro- vide which make it impossible to implement the function
vide easy access to a CPU cycle counter register (modefmandling as for other architectures. In most cases it is
IA-32, 1A-64, x86-64, Alpha in the moment). For other no problem to apply the optimizations for variables and
architectures these lines are simply missing. functions at the same time. This is what in fact should be

done all the time to achieve best performance across all
The timing information provides absolute values for thearchitectures.
total time spend during startup in the dynamic linker, the
time needed to perform relocations, and the time spendhe most important recommendation is to always use
in the kernel to load/map binaries. In this example the-fpic or-fPIC when generating code which ends up in
relocation processing dominates the startup costs witlDSOs. This applies to data as well as code. Code which
more than 50%. There is a lot of potential for optimiza- is not compiled this way almost certainly will contain text
tions here. The unit used to measure the time is CPUelocations. For these there is no excuse. Text relocations
cycles. This means that the values cannot even be commequires extra work to apply in the dynamic linker. And
pared across different implementations of the same arargumentation saying that the code is not shared because
chitecture. E.g., the measurement for a Pentilithand no other process uses the DSO is invalid. In this case itis
a Pentium" 4 machine will be quite different. But the not useful to use a DSO in the first place; the code should
measurements are perfectly suitable to measure improvéust be added to the application code.
ments on one machine which is what we are interested
here. Some people try to argue that the usefpfc /-fPIC

on some architectures has too many disadvantages. This
Since relocations play such a vital part of the startup peris mainly brought forward in argumentations about IA-
formance some information on the number of relocations32. Here the use dfoebx as the PIC register deprives
is printed. In the example a total of 133 relocations arethe compiler of one of the precious registers it could use
performed, from the dynamic linker, the C library, and the for optimization. But this is really not that much of a
executable itself. Of these 5 relocations could be servegroblem. First, not havingeebx available was never a
from the relocation cache. This is an optimization imple-big penalty. Second, in modern compilers (e.g., gcc after
mented in the dynamic linker to handle the case of mul+elease 3.1) the handling of the PIC register is much more
tiple relocations against the same symbol more efficientflexible. It is not always necessary to u%ebx which
After the program itself terminated the same informationcan help eliminating unnecessary copy operations. And
is printed again. The total number of relocations here ighird, by providing the compiler with more information as
higher since the execution of the application code causedxplained later in this section a lot of the overhead in PIC
a number, 55 to be exact, of run-time relocations to becan be removed. This all combined will lead to overhead
performed. which is in most situations not noticeable.

The number of relocations which are processed is stabl@/hen gcc is used, the optiorfpic /-fPIC also tell the
across successive runs of the program. The time meaompiler that a number of optimizations which are pos-
surements not. Even in a single-user mode with no othesible for the executable cannot be performed. This has to
programs running there would be differences since thelo with symbol lookups and cutting it short. Since the
cache and main memory has to be accessed. It is thereempiler can assume the executable to be the first object
fore necessary to average the run-time over multiple runsn the lookup scope it knows that all references for global

12 \ersion 1.9 How To Write Shared Libraries

symbols known to be defined in the executable are remarked to contain text relocations. This is easy enough

solved locally. Access to locally defined variable couldto do:

be done directly, without using indirect access through
the GOT. This is not true for DSOs: the DSOs can be
later in the lookup scope and earlier objects might be in-

readelf -d

binary | grep TEXTREL

terposed. There is no compiler option to separate thisf this produces any output text relocations are present
optimization from the generation of position-independentand one better starts looking what causes them.

code.

2.1
Which of the two options;fpic or -fPIC , have to be
used must be decided on a case-by-case basis. For some

Data Definitions

architectures there is no difference at all and peopl_e te”_ﬂj/ariables can be defined in C and C++ in several different
to be careless about the use. For most RISC there is a bWays. Basically there are three kinds of definitions:

difference. As an example, this is the code gcc generates
for SPARC to read a global variabygobal when using
-fpic

sethi %hi(_GLOBAL_OFFSET_TABLE_-4),%I7

call .LLGETPCO

add %I7,%lo(_GLOBAL_OFFSET_TABLE_+4),%I7
Id [%l7+global],%g1

Id [%g1],%g1

And this is the code sequencefffIC is used:

sethi %hi(_GLOBAL_OFFSET_TABLE_-4),%I7

call .LLGETPCO

add %I7,%lo(_ GLOBAL_OFFSET_TABLE_+4),%I7
sethi %hi(global),%g1

or %g1,%lo(global),%g1

Id [%17+%g1],%g1

Id [%6g1],%01

In both case%ol7 is loaded with the address of the GOT
first. Then the GOT is accessed to get the address olfl
global . While in the-fpic case one instruction is suf-
ficient, three instructions are needed in tfIC case.

The -fpic option tells the compiler that the size of the
GOT does not exceed an architecture-specific value (8kB
in case of SPARC). If only that many GOT entries can
be present the offset from the base of the GOT can be
encoded in the instruction itself, i.e., in the instruc-

tion of the first code sequence above.-fHIC is used

no such limit exists and so the compiler has to be pes-
simistic and generate code which can deal with offsets of
any size. The difference in the number of instructions in
this example correctly suggests that e~ should be
used at all times unless it is absolutely necessary to use
-fPIC . The linker will fail and write out a message when
this point is reached and one only has to recompile the
code.

When writing assembler code by hand it is easy to miss
cases where position independent code sequences must
be used. The non-PIC sequences look and actually are
simpler and more natural. Therefore it is extremely im-
portant to in these case to check whether the DSO is

Common Common variables are more widely used FOR-

TRAN but they got used in C and C++ as well to
work around mistakes of programmers. Since in
the early days people used to drop ¢eern key-
word from variable definitions, in the same way it
is possible to drop it from function declaration, the
compiler often has multiple definitions of the same
variable in different files. To help the poor and
clueless programmer the C/C++ compiler normally
generates common variables for uninitialized defi-
nitions such as

int foo;

For common variables there can be more than one
definition and they all get unified into one location
in the output file. Common variables are always
initialized with zero. This means their value does
not have to be stored in an ELF file. Instead the
file size of a segment is chosen smaller than the
memory size as described[in]L.4.

ninitialized If the programmer uses the compiler com-

mand line optionfno-common the generated code
will contain uninitialized variables instead of com-
mon variables if a variable definition has no ini-
tializer. Alternatively, individual variables can be
marked like this:

int foo __attribute ((nocommon));

The result at run-time is the same as for common
variable, no value is stored in the file. But the rep-
resentation in the object file is different and it al-
lows the linker to find multiple definitions and flag
them as errors. Another difference is that it is pos-
sible to define aliases, i.e., alternative names, for
uninitialized variables while this is not possible for
common variables.

With recent gcc versions there is another method to
create uninitialized variables. Variables initialized

with zero are stored this way. Earlier gcc versions
stored them as initialized variables which took up

space in the file. This is a bit cumbersome for vari-

ables with structured types. So, sticking with the

per-variable attribute is probably the best way.

Ulrich Drepper Version 1.9

13

Initialized The variable is defined and initialized to a
programmer-defined value. In C:

int foo = 42;

In this case the initialization value is stored in the
file. As described in the previous case initializa-
tions with zero are treated special by some compil-
ers.

if val3
To summarize, it is always preferable to add variables

enum { vall, val2, val3 }

should be rewritten as

enum { val3, vall, val2 +

is the value most often used for initializations.

as uninitialized or initialized with zero as opposed to as
Normally there is not much the user has to do to creatdnitialized with a value other than zero.

optimal ELF files. The compiler will take care of avoid-

ing the initializers. To achieve the best results even with2.2 Export Control

old compilers it is desirable to avoid explicit initializa-
tions with zero if possible. This creates normally com-
mon variables but if combined with gcco-common

When creating a DSO from a collection of object files the

flag the same reports about multiple definitions one wouldlynamic symbol table will by default contain all the sym-

get for initialized variables can be seen.

bols which are globally visible in the object files. In most

cases this set is far too large. Only the symbols which are
There is one thing the programmer is responsible for. Asactually part of the ABI should be exported. Failing to

an example look at the following code:

restrict the set of exported symbols are numerous draw-

backs:

bool is_empty = true;
char s[10];

const char *get_s (void) {
return is_empty ? NULL : s;

}

The functionget _s uses the boolean variakile _empty

to decide what to do. If the variable has its initial value
the variables is not used. The initialization value of
is _empty is stored in the file since the initialize is non-
zero. But the semantics &f _empty is chosen arbitrar-
ily. There is no requirement for that. The code could
instead be rewritten as:

bool not_empty = false;
char s[10];

const char *get_s (void) {
return not_empty ? s : NULL;

}

Now the semantics of the control variable is reversed. It
is initialized withfalse which is guaranteed to have the
numeric value zero. The test in the functiget _s has

to be changed as well but the resulting code is not less or
more efficient than the old code.

By simple transformations like that it is often possible
to avoid creating initialized variables and instead using
common or uninitialized variables. This saves disk space

e Users of the DSO could use interfaces which they
are not supposed to. This is problematic in revi-
sions of the DSO which are meant to be binary
compatible. The correct assumption of the DSO
developer is that interfaces, which are not part of
the ABI, can be changed arbitrarily. But there are
always users who claim to know better or do not
care about rules.

e According to the ELF lookup rules all symbols in
the dynamic symbol table can be interposed (un-
less the visibility of the symbol is restricted). I.e.,
definitions from other objects can be used. This
means that local references cannot be bound at link
time. If it is known or intended that the local defi-
nition shouldalwaysbe used the symbol in the ref-
erence must not be exported or the visibility must
be restricted.

e The dynamic symbol table and its string table are
available at run-time and therefore must be loaded.
This can add a significant amount of memory, even
though it is read-only. One might think that the
size is not much of an issue but if one examines
the length of the mangled names of C++ variables
or functions it becomes obvious that this is not the
case. In addition we have the run-time costs of
larger symbol tables which we discussed in the pre-
vious section.

and eventually improves startup times. The transformaWe will now present a number of possible solutions for
tion is not limited to boolean values. It is sometimes pos-the problem of exported interfaces. Some of them solve
sible to do it for variables which can take on more thanthe same problem in slightly different ways. We will say
two values, especially enumeration values. When definwhich method should be preferred. The programmer has
ing enums one should always put the value, which is mostto make sure that whatever is used is available on the tar-
often used as initializer, first in thenum definition. I.e. get system.

14 \ersion 1.9 How To Write Shared Libraries

In the discussions of the various methods we will use oneCompiled in the same way as before we see that all the re-
example: locations introduced by our example code vanished. l.e.,
we are left with six relocations and three PLT entries. The

) code to accedast now looks like this:
int last;

int next (void) {

| movl last@GOTOFF(%ebx), %eax
return ++last;

incl %eax

} movl %eax, last@GOTOFF(%ebx)

int index (int scale) {

return next () << scale; . - .
} The code improved by avoiding the step which loads the

address of the variable from the GOT. Instead, both mem-

ory accesses directly address the variable in memory. At
Compiled on a IA-32 Linux machine a DSO with only link-time the variable location has a fixed offset from the
this code (plus startup code etc) contains seven relocaPIC register, indicated symbolically Hgst@GOTOFF.
tions, two of which are relative, and four PLT entries (useBy adding the value to the PIC register value we get the
therelinfo script). We will see how we can improve on address ofast . Since the value is known at link-time
this. Four of the normal and both relative relocations aghis construct does not need a relocation at run-time.
well as three PLT entries are introduced by the additional
code used by the linker to create the DSO. The actual exthe situation is similar for the call teext . The |IA-32 ar-
ample code creates only one normal relocationdsir chitecture, like many others, know a PC-relative address-
and one PLT entry fonext . To increment and read the ing mode for jumps and calls. Therefore the compiler can
variablelast innext the compiler generates code like generate a simple jump instruction

call next
movl last@GOT(%ebx), %edx

movl (%edx), %eax
incl %eax
movl %eax, (%edx)

and the assembler generates a PC-relative call. The dif-
ference between the address of the instruction following
thecall and the address akxt is constant at link-time
and therefore also does not need any relocation. Another
and the call ohext is compiled to advantage is that, in the case of IA-32, the PIC register
does not have to be set up before the jump. If the com-
piler wouldn’t know the jump target is in the same DSO
the PIC register would have to be set up. Other architec-
tures have similar requirements.

call next@PLT

These code fragments were explained in se¢tion]1.5.4.
g P ffion] The generated code is optimal. The compiler might even

consider inlining some code if it finds that this is bene-
ficial. It is always advised that the programmer places
the various variable and function definitions in the same
The easiest way to not export a variable or function is tdfile as the references and then define the referenced ob-
the define it file file-local scope. In C and C++ this is jects asstatic . When generating the production bina-
done by defining it withstatic . This is for many peo- ries it might even be desirable to merge as many input
ple obvious but unfortunately not for all. Many consider files as possible together to mark as many objects as pos-
addingstatic as optional. This is true when consider- siblestatic . Unless one is comfortable with one giant
ing only the C semantics of the code. file there is a limit on how many functions can be grouped

together. Itis not necessary to continue the process ad in-
If in our example neithelast or next are needed out- finitum since there are other ways to achieve the same
side the file we can change the source to: result (minus inlining).

2.2.1 Usestatic

static int last; 2.2.2 Define Visibility

static int next (void) {

return ++ast: The next best thing to usingatic is to explicitly de-

} fine the visibility of objects in the DSO. The generic ELF
ABI defines visibility of symbols. The specification de-
int index (int scale) { fines four classes of which here only two are of interest.
return next () << scale; STV.DEFAULTdenotes the normal visibility. The symbol
} is exported and can be interposed. The other interesting

Ulrich Drepper Version 1.9 15

class is denoted bgTV.HIDDEN Symbols marked like The generic ELF ABI defines another visibility mode:
this are not exported from the DSO and therefore cannoprotected. In this scheme references to symbols defined
be used from other objects. in the same object are always satisfied locally. But the
symbols are still available outside the DSO. This sounds
Since the C language does not provide mechanisms ttike an ideal mechanism to optimize DSO by avoiding the
define the visibility of a function or variable gcc resorts use of exported symbols (see secfion 2.2.6) but it isn't.
once more to using attributes: Processing references to protected symbols is even more
expensive than normal lookup. The problem is a require-
ment in the ISO C standard. The standard requires that

int last function pointers, pointing to the same function, can be
__attribute__ ((visibility (*hidden"))); compared for equality. This rule would be violated with a
fast and simple-minded implementation of the protected
int visibility. Assume an application which references a pro-
__attribute__ ((visibility ("hidden™))) tected function in a DSO. Also in the DSO is another
next (void) { function which references said function. The pointer in
return ++last; the application points to the PLT entry for the function
} in the application’s PLT. If a protected symbol lookup

would simply return the address of the function inside

int index (int scale) { the DSO the addresses would differ.

return next () << scale;

J In programming environments without this requirement

on function pointers the use of the protected visibility

)) . i would be useful and fast. But since there usually is only
This defines the variablast and the functiomext gne implementation of the dynamic linker on the sys-
as hidden. All the object files which make up the DSOtem and this implementation has to handle C programs
which contains this definition can use these symbols. l.e.4 well, the use of protected is highly discouraged.
while static restricts the visibility of a symbol to the
file itis defined in, the hidden attribute limits the visibil- There are some exceptions to these rules. It is possible
ity to the DSO the definition ends up in. In the exampleq create ELF binaries with non-standard lookup scopes.
above the definitions are marked. This does not cause anje simplest example is the usem#f.SYMBOLIC(or of
harm but it is in any case necessary to mark the declarayt symoLicin old-style ELF binaries, see pafje] 21).
tion. In fact it is more important that the declarations are|, these cases the programmer decided to create a non-

marked appropriately since it is mainly the code genersiandard binary and therefore accepts the fact that the
ated for in a reference that is influenced by the attribute. jjes of the ISO C standard do not apply.

Beside telling the backend of the compiler to emit code ' o
to flag the sy?nbol as hidden the attribut% has another purz-'z'3 Define Visibility for C++ Class Members

pose: it allows the compiler to assume the definition is lo-

cal. This means the addressing of variables and functiofor C++ code we can use the attributes as well but they
can happen as if the definitions would be locally definedhave to be used very carefully. Normal function or vari-
inthe file asstatic . Therefore the same code sequencesible definitions can be handled as in C. The extra name
we have seen in the previous section can be generateghangling performed has no influence on the visibility.
Using the hidden visibility attribute is therefore almost The story is different when it comes to classes. The sym-
completely equivalent to usingatic ; the only differ- bols and code created for class definitions are member
ence is that the compiler cannot automatically inline thefunctions and static data or function members. These
function since it need not see the definition. variables and functions can easily be declared as hidden

but one has to be careful. First an example of the syntax.
We can now refine the rule for usirngatic : merge

source files and mark as many functictetic as far as
one feels comfortable. In any case merge the files which class foo {

contain functions which potentially can be inlined. In all static int u __attribute__
other cases mark functions (the declarations) which are ~ ((visibility ("hidden")));
not to be exported from the DSO as hidden. '”;l_av
public:
foo (int b = 1);

Note tr_\at the linker will not add hidden symbols to the void offset (int n):

dynamic symbol table. l.e., even though the symbol ta- int val () const _ attribute
bles of the object files contain hidden symbols they will ((visibility (“hidden™));
disappear automatically. By maximizing the number of .

hidden declarations we therefore reduce the size of the

symbol table to the minimum. int foo::u __ attribute__

16 \ersion 1.9 How To Write Shared Libraries

((visibility ("hidden™))); as closely as possible with the class definition. For this

foo::foo (int b) :a (b) {} reason the class definitions of the example above should
void foo:offset (int n) { u = n; } actually look like this:
int

__attribute__ ((visibility ("hidden")))
foo::val () const { return a + u; }

class foo {
static int u __ attribute__
In this example code the static data membeand the ((visibility ("hidden")));
member functiorval are defined as hidden. The sym- int a;

bols cannot be accessed outside the DSO the definitions Public:
appear in. Please note that this isaailitionalrestriction foo (int b = 1); .
on top of the C++ access rules. For the member functions int ((\i/?;itglitco?;ti d&it.%r;;)_me—
one way around the problem is to instantiate the class in void offsety (int ny: '
more than one DSO. This is usually causing no problems Y
and “only” adds to code bloat.

class foo_ext : protected foo {
Things are getting more interesting when static data mem- public:
bers or static local variables in member functions are used. foo_ext (int b = 1) : foo (b) { }
In this case there must be exactly one definition used void offset (int n)
(please note: “used”, not “present”). To obey this rule { return foo:offset (n); }
it is either necessary to not restrict the export of the static b
data member of member function from the DSO or to
make sure all accesses of the data or function are made

in the DSO with the definitions. If multiple definitions The classioo is regarded as a private class, not to be

are _present itis very easy to make mlstak_es Whe_n hldm.%sed outside the DSO with the instantiation. The public
static data members or the member functions with static

. . . Interface would be the clagso _ext . It provides access
variables since the generated code has no way of knowm% the two public interfaces of the underlving class. As
that there are multiple definitions of the variables. This b ying ;

leads to verv hard to debua buas long as the users of the DSO containing the definitions
y g bugs. respect the requirement that orfyo _ext can be used

In the example code above the static data memlide- there is no way for the com_pller not noticing accesses to
éoo::u andfoo:val outside the DSO containing the

clared hidden. All users of the member must be define 1 finitions
in the same DSO. C++ access rules restrict access only t0 '

member functions, regardless qf whgre they are d.eﬁnedl‘emplate class and functions are not different. The syn-
To make sure all users are defined in the DSO with theiax is the same. Non-inline function definitions get yet

definition ofu it is usually necessary to avoid inline func- . . : .

. again less readable but that is nothing which cannot be
tions which access the hidden data since the inline genelthostl hidden with a few macros
ated code can be placed in any DSO which contains code y '

using the class definition. The member functisiset
is a prime example of a function which should be inlined

but since it accessesit cannot be done. Insteaftfset template<class T>
is exported as an interface from the DSO which contains ¢jass a {
the definition ofu. Ty
public:
If a member function is marked as hidden,vas is in a (T a=0)
the example, it cannot be called from outside the DSO. T r () const __ attribute__
Note that in the example the compiler allows global ac- ((visibility ("hidden")));

cess to the member function since it is defined as a public }
member. The linker, not the compiler, will complain if
this member function is used outside the DSO with the (u=a)

|n_stant_|at|on. Inex_penenced or not fully qurmed users template'<class > T

might interpret this problem as a lack of instantiation gyribyte ((visibility (“hidden")))
which then leads to problems due to multiple definitions. a<T>::r () const { return u; }

template<class T> a<T>:a (T a)

Because these problems are so hard to debug it is essen-

tial to get the compiler involved in making sure the user

follows the necessary rules. The C++ type system is ricH-or templatized classes the problems of making sure that
enough to help if the implementor puts some additionalif necessary only one definition is used is even harder to
effortin it. The key is to mimic the actual symbol accessfix due to the various approaches to instantiation.

Ulrich Drepper Version 1.9 17

2.2.4 Use Export Maps as in the C examples. Using the demangled names re-
quire support in the linker. Assume a file defining the

. following functions:
If for one reason or another none of the previous two so-

lutions are applicable the next best possibility is to in-
struct_ th.e linker to do something. iny the GNL_J and int foo (int a) { ... }
Solaris linker are known to support this, at least with thej; par (int a) { ... }
syntax presented here. Using export maps is not onl¥ruct baz {
useful for the purpose discussed here. When discussing baz (int);
maintenance of APIs and ABIs in chagftér 3 the same kind int r () const;
of input file is used. This does not mean the previous two int s (int);
methods should not be preferred. Instead, export (and
symbol) maps can and should always be used in addition
to the other methods described.
A DSO containing definitions for all these functions and
The concept of export maps is to tell the linker explicitly members should only export the functimo and the de-
which symbols to export from the generated object. Ev-Structor(s) obaz andbaz::s . Anexport map to achieve
ery symbol can belong to one of two classes: exported othis could look like this:
not exported. Symbols can be listed individually, glob-
expressions can be used, or the spetiahtch-all glob
expression can be used. The latter only once. The symi-

bol map file for our example code could look like this: global:
extern "C++" {
foo*;

{ baz::baz*;
global: index; baz::s*
local: *; h

}; local: *;

h

This tells the linker that the symbaidex is to be ex-
ported and all others (matched byare local. We could The use okxtern "C" tells the linker to match the fol-
have listedast andnext explicitly in thelocal: list |owing patterns with demangled C++ names. The first
but it is generally advised to always use the catch-all casentry foo* matches the first global function in the ex-
to mark all not explicitly mentioned symbols as local. ample. The second entry matches the constructor(s) of
This avoids surprises by allowing access only to the symyaz and the third entry matches the functibaz::s
bols explicitly mentions. Otherwise there would also beNote that patterns are used in all cases. This is necessary
the problem with symbols which are matched neither bysincefoo , baz::baz , andbaz:is are not the complete
theglobal: nor by thelocal: , resulting in unspecified names. The function parameter are also encoded in the
behavior. Another unspecified behavior is if a name apmangled name and must be matched. It is not possible to
pears in both lists or is matched using globbing in bothmatch complete demangled C++ names since the current
lists. linker implementation refuses to allow non-alphanumeric
characters. Using pattern might have unwanted effects.
To generate a DSO with this method the user has to pasg there is another member function raz starting with
the name of the map file with theversion-script the letter ‘s’ it will also be exported. And one last odd-
option of the linker. The name of the option suggests thaity should be mentioned: currently the linker requires that
the scripts can be used for more. We will get back to thisthere is no semicolon after the last entry in the C++ block.
when we discuss ABIs in the next chapter.
Using export maps seems like a very desirable solution.
The sources do not have to be made less readable us-
ing attribute declarations or eventually pragmas. All the
knowledge of the ABI is kept locally in the export map
file. But this process has one fundamental problem: ex-
The filefoo.map is supposed to contain text like the one actly because the sources are not modified the final code
shown above. is not optimal. The linker is used only after the compiler
already did its work and the once generated code cannot
It is of course also possible to use export maps with C++be optimized significantly.
code. One has two options in this case: explicitly name
the symbols using their mangled names, or rely on patin our running example the compiler must generate the
tern matching for the mangled names. Using the maneode for thenext function under the worst case sce-
gled names is straight-forwarded. Just use the identifiersario assumption that the varialdat is exported. This

$ gcc -shared -o foo.so foo.c -fPIC \
-WI,--version-script=foo.map

18 \ersion 1.9 How To Write Shared Libraries

means the code sequence usg@OTORFhich was men- -export-symbols option into the completely useless
tioned before cannot be generated. Instead the normatetain-symbols-file option. This option instructs
two instruction sequence usi@GOMust be generated. the linker to prune the normal symbol tables, not the dy-
namic symbol table. The normal symbol table will con-
This is what the linker will see when it gets instructed to tain only the symbols named in the export list file plus the
hide the symbolast . The linker will not touch the ac- specialSTT_SECTIONsymbols which might be needed in
tual code. Code relaxation here would require substantiadelocations. All local symbols are gone. The problem is
analysis of the following code which is in theory possi- that the dynamic symbol table is not touched at all and
ble but not implemented. But the linker will not generate this is the table which is actually used at runtime.
the normalR 386 _GLOBDAT relocation either. Since the
symbol is not exported no interposition is allowed. TheThe effect of the usingibtool this way is that pro-
position of the local definition relative to the start of the grams reading the normal symbol table (for instameog
DSO is known and so the linker will generate a relativedo not find any symbols but those listed in the export
relocation. list. And that is it. There are no runtime effects. Neither
have any symbols been made unavailable for the dynamic
For function calls the result is often as good as it getslinker, nor have any normal relocations been converted
The code generated by the compiler for a PC-relativanto relative relocations.
jump and a jump through the PLT is identical. It is just
the code which is called (the target function versus theThe only reason this method is mentioned here is that
code in the PLT) which makes the difference. The codethere is hopeibtool will learn about converting the
is only not optimal in one case: if the function call is the export lists into the anonymous version maps we have
only reason the PIC register is loaded. For a call to a locaseen in the previous section when the GNU linker is used.
function this is not necessary and loading the PIC is jusiAt that pointlibtool will become useful. Until then
a waste of time and code. relying on its-export-symbols option is misleading
at best.
To summarize, for variables the use of symbol maps cre-
ates larger and less efficient code, adds an entry in the 2.6 Avoid Using Exported Symbols
GOT, and adds a relative relocation. For functions the

generated code sometimes contains unnecessary loads of o o) .
the PIC. One normal relocation is converted into a rel-" SOme situations it might not be desirable to avoid ex-

ative relocation and one PLT entry is removed. This isPOrting a symbol but at the same time all local references
one relative relocation worse than the previous methodsshould use the local definition. This also means that the
These deficiencies are the reason why it is much prefeldSes of the symbols is cheaper since the less general code
able to tell the compiler what is going on since after theS€duences can be used. This is a subset of the problem

compiler finished its work certain decisions cannot be re-discussed so far. A solution needs a different approach
verted anymore. since so far we achieved the better code by not exporting

only.
2.2:5 Libtool's -export-symbols Since a symbol cannot be exported and not-exported at
the same time the basic approach is to use two names for
The fourth method to restrict symbol export is the leastthe same variable or function. The two names then can
desirable of them. It is the one used by the GNU Libtoolbe treated differently. There are multiple possibilities to
program when theexport-symbols option is used. create two names, varying in efficiency and effort.
This option is used to pass to Libtool the name of a file
which contains the names of all the symbols which shouldAt this point it is necessary to add a warning. By per-
be exported, one per line. The Libtool command lineforming this optimization the semantics of the program
might look like this: changes since the optimization interferes with the sym-
bol lookup rules. It is now possible to use more than one
symbol with a given name in the program. Code out-
side the DSO might find a definition of a symbol some-
where else while the code in the DSO always uses the
local definition. This might lead to funny results. Of-
The filefoo.sym would contain the list of exported sym- ten it is acceptable since multiple definitions are not al-
bols. foo.lo is the special kind of object files Libtool lowed. A related issue is that one rule of ISO C can be
generates. For more information on this and other strangeiolated by this. ISO C says that functions are identified
details from the command line consult the Libtool man-by their names (identifiers) and that comparing the func-
ual. tion pointers one can test for equality. The ELF imple-

mentation work hard to make sure this rule is normally
Interesting for us here is the code the linker produces usebeyed. When forcing the use of local symbols code in-
ing this method. For the GNU linker Libtool converts the side and outside the DSO might find different definitions

$ libtool --mode=link gcc -o libfoo.la \
foo.lo -export-symbols=foo.sym

Ulrich Drepper Version 1.9 19

for a given name and therefore the pointers do not match. visibility ("hidden")));
Itis important to always consider these side effects before

performing the optimization. int next (void) {
return ++last_int;
}
))] extern __typeof (next) next_int
Wrapper Functions Only applicable to functions, us- agribute ((alias (“next"),
ing wrappers is the most portable but also most costly visibility ("hidden")));

way to solve the problem. If in our example code we
would want to exporindex as well asnext we could int index (int scale) {
use code like this: return next_int () << scale;

}

static int last This is quite a collection of non-standard gcc extensions

static int next_int (void) { to the C language so it might need some explanation. The

return ++last: actual definitions of all three objects are the same as in the
} original code. All these objects are exported. The differ-
ence in the definitions is thaext is using the internal
int next (void) { aliaslast _int instead ofast and similarly forindex
return next_int (); andnext . What looks like two declarations is the mech-
} anism by which gcc is told about the aliases. It is basi-
cally anextern declaration of an object with the same
int index (int scale) { type (we use heretypeof to ensure that) which has an
return next_int () << scale; alias added. Thalias attribute names the object this
} is an alias of.

To achieve the results we want, namely that the aliases are
not exported and that gcc gets told about this, we have
to add the hidden visibility attribute. Looking back at
sectior 2.2 it should be easy to see that the use of this
attribute is equivalent.

The functiomext is now a simple wrapper aroumext _int
All calls to next _int are recognized by the compiler as
calls to a local function sinceext _int , unlikenext , is
defined withstatic . Therefore no PLT entries is used
for the call inindex .

1f the visibility attributes cannot be used for some reason

The drawback of this method is that additional code is re .
almost the same code should be used, only leaving out

quired (the code for the nemext function) and that call-
ing next also minimally slower than necessary at run-
time. As a fallback solution, in case no other method
works, this is better than nothing.

, Vvisibility ("hidden")

This will create a normal alias with the same scope as the
original symbol. Using export maps the alias can then
be hidden. The resulting binary will not use the efficient

Using Aliases Introducing two names without adding e sequences (see secfion 2.2.4) but the local definition
code can be achieved by creating aliases for existing ohz always be used.

jects. Support for this is included in gcc; this does not

only include the creation of the alias, gcc also knows the\:or C-++ programs defining aliases is a bit more challeng-
type for the alias and can perform appropriate tests whefy g the problem is that the alias attribute requires the
the alias is used. The here goal is therefore to create 3Mame of the defined symbol as a string parameter. For
alias and tell gcc and/or the linker to not export the sym--, . ~qde this means the mangled name. For simple C++

bol. I.e., we apply the same techniques described in thg,ction we manage to get along with the same trick used
previous sections now to an alias. The only difference i, he ¢ example

that defining an alias asatic ~ will not work. The best
method therefore is to use visibility attributes. The other
previously discussed methods will also work but we do"t .

not go into the details for them here. ?dd (int a, int b)
If in our example we want to export boldst andnext }
we can rewrite the example like this:

return a + b;

extern __ typeof (add) add_int
__attribute ((alias ("_Z3addii"),
visibility ("hidden")));

int last;
extern __typeof (last) last_int
__attribute ((alias ("last"), There are only two tricky parts. The first is finding the

20 \ersion 1.9 How To Write Shared Libraries

correct mangled name. For the locally used compiler it isThe flat namespace of the C programming environment
quite easy to determine the name, just compile the codenakes following the guideline to use short names easy.
without the alias definition and look at the symbol table The names the programmer uses are directly mapped to
of the generated file. Name mangling is unfortunatelynames in the ELF file. The same is true for some other
traditionally not well standardized. There exist severalprogramming environments such as traditional Pascal and
different name mangling schemes which means the aliaBORTRAN.
string would have to be adjusted to the compiler which is
used for the compilation. Programming environments with more sophisticated sym-
bol handling use name mangling. The most prominent
The second problem is the use ofypeof if the func- programming language in this class is C++. The sym-
tion name is overloaded. In this case the compiler doedol string of a function consists beside the function name
not know which of the potentially many versions of the also of a description of the parameter list, the classes the
function is meant and it bails out. function is a member of and the namespaces the class
or function is defined in. This can lead to enormously
long symbol names. Names of more than 1,000 charac-
ters have been sighted in the wild. Ada names tend to get

DF.SYMBOLIC The original designers of the ELF for-
very long because of the package namespace.

mat considered the possibility that preferring local def-

initions might be useful. They have included a mecha—The obiect and namespace model in C++ is used to man-
nism which can enforce this. If theF.SYMBOLICflag) P

is set in theDT_FLAGSentry of the dynamic section (or age the complexny O.f Iargg projects and to facilitate code
: LT . . . __reuse. Therefore it is desirable keep symbol names un-
in older ELF binaries: if the dynamic section contains o ;
- modified during the development process. But once a
anDT_SYMBOLICentry) the dynamic linker has to prefer . :
L program is to be deployed the long names become a nui-
local definitions. . .
sance. This is when a person can step in and shorten the

This approach has numerous disadvantages. First, all i ames-

terfaces are affected. The other approaches discuss?d - .
. : . . n C++ the most critical classes are those with templates
here have a per-interface granularity. Treating all inter-

faces like this is normally not the right way. The Secondand/or deeply nested namespaces and class definitions. If

disadvantage is that the compiler does not get told abou%uCh classes are part of the interface of a DSO the pro-

. —._grammer should make a change. A shorter name for a
the use of local symbols and therefore cannot optimiz . 2 .
.) lass can be introduced by deriving publically a new class
the uses, just as if export maps would be used. And wh

. : . rom the class with the long name. The definition could
is even worse, calls to local functions still use the PLT en-be in the alobal scope to avoid the namespace part of the
tries. The PLT and GOT entries are still created and the 9 P P P

jump is indirect. This might be useful in some situationsmangled name. The symbols associated with this new

(e.g., when usingD_PROFILE) but usually means a bi class can be exported, the original class’ names are not.
mi-sg;ed opportunityifor optimization y 9 This does not remove the names of the original class from

the non-dynamic symbol table but this table does not play

Finally the third problem is that the lookup scope is chang%Hy role atrun-time.

in a way which can lead to using unexpected dependen: : ' :
Y 9 P P Mhe wrapper class will have to redefine all non-virtual

cies. DF.SYMBOLICeffectively puts the own object in . o . .
) . member functions of the class it is helping to export. This
the first spot of its own lookup scope so that there are . o .
. requires some work and it might add run-time costs by an
a number of other DSO which are seen before the depen-""" . : ;
) . . additional function call, the one to the wrapper function.
dencies. This is nothing new but the fact that the I:)SOB using inlining this additional function call can be re
marked withDF . SYMBOLICis in an unusual place can y 9 9

cause unexpected versions from being picked up. moved.

. . Shortening symbol names can be considered a micro-
The advice here is toeveruse DF.SYMBOLIC It does oriening sy . i
. optimization and certainly shouldn’t be performed pre-
not improve the code, forces all symbols to be treated the : . Lo
i .Maturely. When keeping this optimization in mind dur-
same, and can cause problems in symbol lookup. It is

mentioned here only for completeness and as a warning, '3 the development it might be easy to implement and
y P Yhe possible benefits can be big. Memory operations are

slow and if the number of bytes which have to be loaded

2.3 Shortening Symbol Names can be reduced this definitely has measurable results.

2.4 Choosing the Right Type
The description of the ELF symbol lookup algorithm shows

that one of the cost factors for the lookup is length of

the symbols involved. For successful lookups the entireThe selection of the right type can have significant im-
string has to be matched and unsuccessful lookups rggact on the performs, startup time, and size of a program.
quire matching the common prefix of the involved strings.Most of the time it seems obvious what the right type

Ulrich Drepper Version 1.9 21

is but alternatives are sometimes available and in other const char str[] = "some string";
cases it might be preferable to rearrange code slightly.
This section will provide a few concrete examples whichAfter adding theconst keyword the compiler is able
by no means are meant to be a complete representation tf move the string in sharable read-only memory. This
all the cases which can be optimized. not only improves the program’s resource use and startup
speed, it also allows to catch mistakes like writing into
2.4.1 Pointers vs. Arrays this string.
But that is not all. Modern gcc and linker versions can
In some situations there is little or no difference betweenwork together to perform cross-object optimizations. I.e.,
pointers and arrays in C. The prototypes strings which appear in more than one object file appear
only once in the final output. And even more: some link-
void scale (int arr[10], int factor) ers perform suffix optimizations, something which is pos-
sible with the string representation used in C. For this it
and is necessary to realize that a string, which is the back-
part of a longer string (including the NUL byte), can be
void scale (int *arr, int factor) represented by the bytes from the longer string.

are in fact mostly equivalent. So people got the impres-

sion that there is never a difference and one often finds const char sl]] = "some string";
code like this: const char s2[] = "string";
char *str = "some string";))
In this case only the stringsome string" has to be

This is correct and meaningful in some situations. A vari-Stored in the read-only data segment. The stisngng"
ableisstr is created with an initial value being a pointer IS represented by a reference to the fifth character of the
to a string. This specific piece of code compiles fine with!Onger string.

some compilers but will generate a warning when com-) .])]
piled with gcc. More on that in the next section. To make this possible the compiler has to emit the string

data in specially marked section. The sections are marked

The point to be made here is that the use of a variabl&ith the flagsSHEMERGENASHFE.STRINGS
in this situation is often unnecessary. There might not be] .
an assignment tetr (note: not the string, the pointer NOt all strings can be handled, though. If a string con-

variable). The value could be used only in I/O, string t&ins an explicit NUL byte, as opposed to the implicit
generation, string comparison or whatever. one at the end of the string, the string cannot be placed

in mergeable section. Since the linker’'s algorithms use

If this is the case the code above is not optimal and waste1€ NUL byte to find the end of the string the rest of the
resources. All that would be needed is the string itself. AINPUt String would be discarded. It is therefore desirable
better definition would therefore be: to avoid strings with explicit NUL bytes.

char str[] = "some string"; 2.4.3 Arrays of Data Pointers

This is something completely different than the code be- , ,
fore. Herestr is a name for a sequence of bytes which _Some data structure designs which work perfectly well

contains initially the sequentsome string” . By rewrit- N applicat_iorj code qdd significant costs When used in
ing code in this way whenever it is possible we save ond?SOS: This is especially true for array of pointers. One
pointer variable in the non-sharable data segment, anfX@mple which shows the dilemma can be met frequently
one relative relocation to initialize the variable with a N Well-designed library interface. A set of interfaces re-
pointer to the string. Eventually the compiler is able to tUrns error number which can be converted using another
generate better code since it is known that the value ofunction into strings. The code might look like this:

str can never change (the bytes pointed tosby can

change). _
ge) static const char *msgs[] = {
[ERR1] = "message for errl",
2.4.2 Foreverconst [ERR2] = "message for err2",

[ERR3]

One nit still exists with the result in the last section: the F
string is modifiable. Very often the string will never change. const char *errstr (int nr) {
In such a case the unsharable data segment is unnecessar- return msgs[nr];

ily big. }

"message for err3"

22 \ersion 1.9 How To Write Shared Libraries

The problematic piece is the definition mkgs. msgs is
as defined here a variable placed in non-sharable, writable
memory. It is initialized to point to three strings in read-

static const char msgstr[] =
"message for err1\0"
"message for err2\0"

only memory (that part is fine). Even if the definition “message for err3”;

would be written as . . .
static const size_t msgidx[] = {

0,

sizeof ("message for errl"),
sizeof ("message for errl")

+ sizeof ("message for err2")

static const char *const msgs[] = {

(note the additioronst) this would not change this (but
it opens up some other opportunities, 2.6). The com-
piler still would have the place the variable in writable
memory. The reason are three relative relocation which
modify the content of the array after loading. The total
cost for this code is three words of data in writable mem- ~ }
ory and three relocations modifying this data in addition
to the memory for the strings themselves.

const char *errstr (int nr) {
return msgstr + msgidx[nr];

The content of both arrays in this code is constant at

compile time. The references tosgstr and msgidx

Whenever a variable, array, structure, or union, containgn errstr ~ also do not need relocations since the defini-

a pointer, the definition of an initialized variable requirestions are known to be local. The cost of this code include

relocations which in turn requires the variable to be place¢hreesize t words in read-only memory in addition to

in writable memory. This along with the increased startupthe memory for the strings. 1.e., we lost all the reloca-

time due to processing of the relocations is not acceptablgons (and therefore startup costs) and moved the array

for code which is used only in error cases. from writable to read-only memory. In this respect the
code above is optimal.

For a simple case as the example above a solution entirely

within C can be used by rewriting the array definition like For a more elaborate and less error-prone method of con-

this: structing such tables is appen(lik B. The presented code
does not require the programmer to duplicate strings which
must be kept in sync.

static const char msgs[][17] = {

[ERR1] = "message for errl", 2.4.4 Arrays of Function Pointers
[ERR2] = "message for err2",
[ERR3] = "message for err3"

h The situation for function pointers is very similar to that
of data pointers. If a pointer to a function is used in the
initialization of a global variable the variable the result
The result of this code is optimal. The arraysgs is 9€tS Writte_n to must be writable and r_10n-sharab_|e. For
placed entirely in read-only memory since it contains nolocally defined functions we get a relative relocation and

pointer. The C code does not have to be rewritten. ThdOr functions undefined in the DSO a normal relocation

drawback of this solution is that it is not always applica- Which is not lazily performed. The question is how to
ble. If the strings have different lengths it would mean @void the writable variable and the relocations. Unfortu-

wasting quite a bit of memory since the second dimenhately there is no generally accepted si_ngle answer. All
sion of the array has to be that of the length of the longesP€ can do here is to propose a few solution. Our example
string plus one. The waste gets even bigger if the value§0de for this section is this:

ERRQ ERRY andERR2are not consecutive and/or do not

start with zero. Every missing entry would mean, in this static int a0 (int a) { return a + 0; }

case, 17 unused bytes. static int al (int a) { return a + 1; }
static int a2 (int a) { return a + 2; }

There are other methods available for case which cannot

be handled as the example above but none without major ~ Static int (*fps[]) (int) = {

code rewrit@ One possible solution for the problem is [0] = ao,

the following. This code is not as elegant as the original [%] - a;'

code but it is still maintainable. Ideally there should be a . [2] = a

tool which generates from a description of the strings the
appropriate data structures. This can be done with a few
lines

int add (int a, int b) {
return fps[b] (a);
}

“1f we would write assembler code we could store offsets relative to
a point in the DSO and add the absolute address of the reference point)))]]
when using the array elements. This is unfortunately not possible in CA solution for this problem must inevitably be differ-

Ulrich Drepper Version 1.9 23

ent from what we did for strings where we combined all cations in a DSO and which require that the atedgls
strings into one. We can do this for functions as well butis writable and placed in non-sharable memory.
it will look different:
The above code in principal is an implementation of a
switch statement. The difference is that the compiler
int add (int a, int b) { never stores absolute addresses which would need relo-

SWitChO,(b) { cations of position-independent code is generated. In-

case - } stead the addresses are computed relative to the PIC ad-
return a + O; . .

case 1: dress, producing a constant offset. This offset then has
return a + 1- to be added to the PIC register value which is a minimal

case 2 amount of extra work. To optimize the code above a sim-
return a + 2; ilar scheme but be used.

}

} int add (int a, int b) {

static const int offsets[] = {

L . . &&a0-&&a0, &&al-&&al, &&a2-&&ald
Inlining the code as in the code above should certainly be

the preferred solution. The compiler never generates re- g,oto *(&&a0 + offsets[b]):

locations for the implementation ofsaitch statement a0
and therefore the whole code does not need any reloca- return a + 0:
tion. al:

return a + 1,
Inlining makes sense even if the inlined function are much ~ a2:
larger. Compilers do not have problems with large func- retun a + 2;
tions and might even be able to optimize better. The
problem is only the programmer. The original code was

clean and intentionally written using function pointers. Since we do not have direct access to the PIC register at
The transformed code mlght be much less readable. Thléomp"e-“me and cannot express the Computations of the
makes this kind of optimization one which is not per- offsets we have to find another base address. In the code
formed until the code is tested and does not need mucBpove it is simply one of the target addresses, The
maintenance anymore. arrayoffsets is in this case really constant and placed
in read-only memory since all the offsets are known once
A similar problem, though it (unfortunately) is rather rare the compiler finished generating code for the function.
today, arises for the use of computedto s, a gcc ex- No relocations are necessary. The type usedffegts
tension for C. Computedoto s can be very useful in mjight have to be adjusted. If the differences are too large
computer-generated code and in highly optimized gbde. (only really possible for 64-bit architectures, and then
The previous example using computgio s mightlook only for tremendously large functions) the type might
like this: have to be changed #size _t or something equivalent.
In the other direction, if it is known that the offsets would
fit in a variable of typeshort or signed char these

int add (int a, int b) { types might be used to save some memory.

static const void *labels[] = {
&&a0, &&al, &&a2
% 2.4.5 C++ Virtual Function Tables
goto *labels[b];
a(r)éturn a+o Virtual function tables, generated for C++ classes with
al: member functions tagged witvirtual , are a special
return a + 1 case. The tables normally involve function pointer which
az: cause, as seen above, the linker to create relocations. It
return a + 2; is also worthwhile looking at the runtime costs of virtual
} functions compared to intra- and inter-DSO calls. But

first the relocation issues.

How the code works should be obvious. The afeagls Usually the virtual function table consists of an array of
contains pointers to the place_s in the function where thunction pointers or function descriptors. These represen-
labels are placed and theto s jumps to the place picked (ations have in common that for every slot in the virtual
outof the array. The problem with this code is that the ar-nction table there must be one relocation and all the re-
ray contains absolute address which require relative relogcations have to be resolved at startup-time. Therefore

8nterested readers might want to look attherintf implemen- Many different virtual function tables and virtual function
tation in the GNU libc. tables with many entries impact startup time.

24 \ersion 1.9 How To Write Shared Libraries

One other implication is noteworthy. Even though at run-In this case the real implementation of the function is in

time normally only one virtual function table is used (sincevifunc _do and the virtual function just calls it. There

the name is the same the first is in the lookup scope iss no need for the user to call the virtual function di-

used) all tables must be initialized. The dynamic linkerrectly as in the functiorbar above sincevirfunc _do

has no possibility to determine whether the table will becan be called instead. Therefore the linker version script

used at some point or not and therefore cannot avoid inieould hide the symbol for the virtual function and export

tializing it. Having exactly one virtual function table def- virfunc _do to be called from other DSOs. If the user

inition in all the participating DSOs is therefore not only still calls the virtual function the linker will not be able to

useful for space conservation reasons. find a definition and the programmer has to know that this
means she has to rewrite the code to usianc _do.

The cost of each relocation is depends on the functiofmhis makes using the class and the DSO a bit more com-

being defined locally and not exported or not. Only for plex.

functions which are explicitly hidden by using the visibil-

ity attributes or a version script can the linker use relativeThe consequence of hiding the virtual function is that the

relocations which can be processed quickly. Otherwisevirtual function table slot fovirffunc can be handled

relocations with symbol lookups have to be used. Usingwith a relative relocation. This is a big gain not only be-

the visibility attributes was mentioned as a possibility to cause this relocation type is much faster to handle. Since

get relative relocations. But since the virtual function ta-virtual function tables contain data references the relo-

ble and the instantiated member functions are generatethtion of the virtual function table slots must happen at

by the compiler adding an attribute cannot be done with-startup time.

out some dirty tricks. So using linker version scripts is

really the only possibility. The improved example above assumes that direct calls
are more frequent than calls through the virtual func-

But even this is often not possible. The virtual functionstion table since there is additional overhead (one extra

can be called not only through the virtual function table function call) involved when callingirfunc . If this as-

but also directly if the compiler can determine the exactsumption is wrong and calls through the virtual function

type of an C++ object. Therefore virtual function in most table are more frequent, then the implementations of the

cases have to be exported from the DSO. For instancéwo functions can be swapped.

the virtual function in the following example is called di-

rectly. In summary, the number and size of virtual function ta-
bles should be kept down since it directly impacts startup
time behavior. If virtual functions cannot be avoided the

struct foo { implementations of the functions should not be exported.
virtual int virfunc () const;

h 2.5 Improving Generated Code

foo var;

int bar () { return var.virfunc (); }

On most platforms the code generated for DSOs differs
from code generated for applications. The code in DSOs
The reason is thatar is known to have typdoo and needs to be relocatable while application code can usu-
not a derived type from which the virtual function table ally assume a fixed load address. This inevitably means
is used. If the clasto is instantiated in another DSO that the code in DSOs is slightly slower and probably
not only the virtual function table has to be exported bylarger than application code. Sometimes this additional
that DSO, but also the virtual functiafirfunc . overhead can be measured. Small, often called functions
fall into this category. This section shows some problem
If a tiny runtime overhead is acceptable the virtual func-cases of code in DSOs and ways to avoid them.
tion and the externally usable function interface should
be separated. Something like this: In the preceding text we have seen that for 1A-32 a func-
tion accessing a global variable has to load determine the
address of the GOT to use tl@GOTOFBperation. As-
* In the header. */ suming this C code
struct foo {
virtual int virfunc () const;
int virfunc_do () const; static int foo;
18 int getfoo (void)
{ return foo; }
/* In the source code file. */
virtual int foo:.virfunc () const
{ return virfunc_do (); }
int foo::virfunc_do () const
{ ...do something... } getfoo:

the compiler might end up creating code like this:

Ulrich Drepper Version 1.9 25

call 1f getfoo:

1: popl %ecx movl foo,%eax
addl _GLOBAL_OFFSET_TABLE_][.-1b],%ecx ret
movl foo@GOTOFF(%ecx),%eax

ret
The drawback is that the resulting binary will have text

relocations. The page on which this code resides will not

The actual variable access is overshadowed by the oveP® sharable, the memory subsystem is more stressed be-
head to do so. Loading the GOT address intodieex ~ Cause of this, a runtime relocation is needed, and program
register takes three instructions. What if this functionStartup is slower because of both these points. Overall,
is called very often? Even worse: what if the function there is a measurable cost associated with not using PIC.
getfoo would be defined static or hidden and no pointerThis poss.ibility sh'oulq be avoided whenever possible: If
to it are ever available? In this case the caller might al-th€ DSO is question is only used once at the same time
ready have computed the GOT address; at least on |A_3§.e., there are no add_monal copies of the same program
the GOT address is the same for all functions in the DSCP' Other programs using the DSO) the overhead of the

or executable. The computation of the GOT address iffoPied page is not that bad. Only in case the page has

foobar would be unnecessary. The key word in this sce-{0 P evacuated from memory we would see measurable

nario description is “might”. THe IA-32 ABI does not deficits sin_ce the page cannot simply be discarded, it must
require that the caller loads the PIC register. Only if aP® Stored in the disk swap storage.
function calls uses the PLT do we know tlagbx con-)])
tains the GOT address and in this case the call could comEn® Second proposed solution has a bigger impact on the
from any other loaded DSO or the executable. |.e., we re?Whole code. Assume this extended example:
ally always have to load the GOT address.
static int foo;
On platforms with better-designed instruction sets the gestatic int bar;
erated code is not bad at all. For example, the AMD64int getfoo (void)
version could look like this: { retun foo; }
int getboth (void)
{ return bar+getfoo(); }
getfoo:
movl foo(%rip),%eax

. If this code gets translated as is, both functions will load
re

the GOT address to access the global variables. This can
be avoided by putting all variables in a struct and passing

The AMD64 architecture provides a PC-relative data ad_the address of the struct to the functions which can use it.

. O .~~~ For instance, the above code could be rewritten as:
dressing mode which is extremely helpful in situations
like this.
static struct globals {
Another possible optimization is to require the caller to int foo;
load the PIC register. On |A-64 thgp register is used int bar;
for this purpose. Each function pointer consist of a pairt 91902IS: .
function address angp value. Thegp value has to be {St?;'fur':t '_Tlfgg, (}S truct globals *g)
loaded before making the call. The result is that for our;, getfoog (void')
running example the generated code might look like thisy ey intfoo(aglobals): }
int getboth (void)
{ return globals.bar+intfoo(&globals); }

getfoo:
addl rl4=@gprel(foo),gp;;)
Id4 r8=[r14] The code generated for this example does not compute
br.ret.sptk.many b0 the GOT address twice for each calldetboth . The

functionintfoo uses the provided pointer and does not
need the GOT address. To preserve the semantics of the
If the caller knows that it is in the same object as thefirst code this additional function had to be introduced;
called function it can avoid the loading gb. 1A-32 is it is now merely a wrapper arouriatfoo . If it is pos-
really a special case, but still a very common one. So itsible to write the sources for a DSO to have all global
is appropriate to look for a solution. variables in a structure and pass the additional parameter
to all internal functions, then the benefit on IA-32 can be
Any solution must avoid the PIC register entirely. We big.
propose two possible ways to improve the situation. First,
do not use position-independent code. This will generatdBut it must be kept in kind that the code generated for the
code like changed example is worse than what would be created

26 \ersion 1.9 How To Write Shared Libraries

for the original on most other architectures. As can beThis is only a partial solution but already very useful. By
seen, in the AMDG64 case the extra parametentfoo using thez now linker option it is possible to disable all
would be pure overhead. On IA-64 markipgtfoo as lazy relocation at the expense of increased startup costs
hidden would allow to avoid the PLT and thereforegipe = and make all relocation eligible for this special treatment.
register is not reloaded during the callgetfoo . Again, Forlong-running applications which are security relevant
the parameter is pure overhead. For this reason it is queshis is definitely a possibility: the startup costs should not
tionable whether this IA-32 specific optimization should weigh in as much as the gained security.

ever be performed. If IA-32 is the by far most important

platform it might be an option. The GOT and PLT are not the only parts of the applica-
tion which benefit from this feature. In section 214.2 we
2.6 Increasing Security have seen that adding as maoyist to a data object def-

inition as possible has benefits when accessing the data.
But there is more. Consider the following code:

The explanation of ELF so far have shown the critical

impqrtance of the GOT al_"nd PLT c_lata structures used alynst char *msgsl] = {

runtime by the dynamic linker. Since these data struc- »gne" "two", "three"

tures are used to direct memory access and function calks

they are also a security liability. If a program error pro- const char *const msgs2[] = {

vides an attacker with the possibility to overwrite a sin- "one", "two", "three"

gle word in the address space with a value of his choos}:

ing, then targetting a specific GOT is a worthwhile goal.

A changed GOT value might redirect a call to a func-

tion which is called through the PLT to an arbitrary other It has been explained that neither array can be moved into

place. An example with security relevance could be a calthe read-only, and therefore shared, data section if the file

to setuid to drop a process’ priviledges which is redi- is linked into a DSO. The addresses of the strings pointed

rected to perhapgetpid . The attacker could therefore to by the elements are known only at runtime. Once the

keep the raised priviledges and later cause greater harmaddresses are filled in, though, the elementsnsds2
must never been modified. Therefore gcc stores the array

This kind of attack would not be possible if the data GOT msgs1 in the .data section whilemsgs?2 is stored into

and PLT could not be modified by the user program. Fora section calleddata.rel . This.data.rel section is

some platforms, like 1A-32, the PLT is already read-only. just like .data but the dynamic linker could take away

But the GOT must be modifiable at runtime. The dy- write-access after the relocations are done. The previ-

namic linker is an ordinary part of the program and it ously described handling of the GOT is just a special case

is therefore not possible to require the GOT in a mem-of exactly this feature. Adding as manygnst as possi-

ory region which is writable by the dynamic linker but ble together with thez relro linker option therefore

not the rest of the application. Another possibility would protects even program data. This might even catch bugs

be to have the dynamic linker change the access permisvhere code incorrectly modifies data declaredast .

sions for the memory pages containing the GOT and PLT

whenever it has to change a value. The required calls té completely different issue, but still worth mentioning

mprotect are prohibitively expensive, ruling out this so- in the context of security, are text relocations. Generat-

lution for any system which aims to be performing well. ing DSOs so that text relocations are necessary (see sec-
tion[2) means that the dynamic linker has to make mem-

At this point we should remember how the dynamic linkerory pages, which are otherwise read-only, temporarily

works and how the GOT is used. Each GOT entry be-writable. The period in which the pages are writable is

longs to a certain symbol and depending on how the symusually brief, only until all non-lazy relocations for the

bol is used, the dynamic linker will perform the relo- object are handled. But even this brief period could be

cation at startup time or on demand when the symbokxploited by an attacker. In a malicious attack code re-

is used. Of interest here are the relocations of the firsgions could be overwritten with code of the attacker’s

group. We know exactly when all non-lazy relocation choice and the program will execute the code blindly if it

are performed. So we could change the access permiseaches those addresses.

sion of the part of the GOT which is modified at startup

time to forbid write access after the relocations are doneDuring the program startup period this is not possible

Creating objects this way is enabled by thaerelro since there is no other thread available which could per-

linker option. The linker is instructed to move the sec-form the attack while the pages are writable. The same is

tions which are only modified by relocations onto sep-not true if later, when the program already executes nor-

arate memory page and emit a new program header emal code and might have start threads, some DSOs are

try PT.GNURELROto0 point the dynamic linker to these loaded dynamically withdlopen . For this reason cre-

special pages. At runtime the dynamic linker can thenating DSOs with text relocation means unnecessarily in-

remove the write access to these pages after it is done. creasing the security problems of the system.

Ulrich Drepper Version 1.9 27

3 Maintaining APIs and ABIs ments therefore is that the parameters of a function do not
change. This brings up an interesting point: in C++ this

When writing DSOs which are used as resources in mulis ensured automatically. Functions inco_rporate in their
tiple projects mastering the technical aspects of Writingmangled. names the parameter typgs. Thls means that any
optimized DSOs is only part of what is needed. Main- qhange in the signature of a function will result in link-
taining the programming interface (API) and the binaryt'mef‘ and ruq-tlme errors and thergfore <?an pe detected
interface (ABI) play an even more important role in asuc-€asily. This is not_the case for variables; their mangled
cessful project. Without APl and ABI stability the DSO names only contain the_ namespace part. Another good
would be a burden to use or even unusable. In this sed£aso" to not export variables as part of the API.

tion we will introduce a number of rules which increase 3.2 Defining Stability

the chance of success for project which provides inter-
faces for other projects. We are talking specifically about

library implementations in DSOs but most rules can beaying said that stability of the ABI is the highest goal

transferred to projects of any kind. of DSO maintenance it is now time to define what sta-
bility means. This might be surprising for some readers
3.1 What are APIs and ABIs? as a nive view of the problem might be that everything

which worked before has to continue working in the fu-
ture. Everybody who tried this before will see a problem
DSOs are used both at compile time and at run-time. Awith this.
compile time the linker tries to satisfy undefined refer-
ences from the definitions in the DSO. The linker thenRequiringeverything to continue to be possible in future
associates the reference with the definition in the DSO. Ineleases would mean that even programs, which use in-
ELF objects this reference is not explicitly present sinceterfaces in an undocumented way have to be supported.
the symbol lookup allows finding different definitions at Almost all non-trivial function interfaces allow parame-
run-time. But the reference is marked to be satisfied. Aters to specify values which are outside the documented
run-time the program can rely on the fact that a defini-interface and most interfaces are influenced by side ef-
tion is present. If this would not be the case somethingects from other functions or previous calls. Requiring
changed in the DSO between the time of linking the ap-that such uses of an interface are possible in future revi-
plication and the time the application is executed. Asions means that not only the interface but also the im-
change in which a symbol vanishes is usually fatal. Inplementation is fixed.
some cases definitions in other DSOs can take over but
this is nothing which one can usually be depended onAs an example assume the implementation obthek
A symbol once exported must be available at run-time infunction in the C run-time library. The standard requires
the future. that the first call ifstrtok gets passed a nawdJLL first
parameter. But what happens if the first call hataLas
The ABI of the DSO comprises the collection of all the the first parameter? In this case the behavior is undefined
definitions which were available for use during the life- (not even implemented-defined in this case). Some im-
time of the DSO. Maintaining ABI compatibility means plementations will in this case simply returtULL since
that no definition, also called interface, gets lost. This isthis a common side effect of a possible implementation.
only the easy part, though. But this is not guaranteed. The function call might as
well cause the application to crash. Both are valid im-
For variable definitions it also means that the size anglementations but changing from one to the other in the
structure of the variable does not change in a way thdifetime of a DSO would mean an incompatibility.
application cannot handle. What this actually means de-
pends on the situation. If any code outside the DSO diBut is it really an incompatibility? No valid program
rectly accesses the variable the accessed part of the struwould ever be affected. Only programs which are not fol-
ture of the variable must not change. On platforms whichlowing the documented interface are affected. And if the
require copy relocations to handle accesses to variableshange in the implementation would mean an improve-
defined in DSOs in the main application (such as I1A-32)ment in efficiency (according to whatever measure) this
the size of the variable must not change at all. Otherwisevould mean broken applications prevent progress in the
variables might increase in size. implementation of a DSO. This is not acceptable.

The requirements on function definitions are even harde&tability therefore should be defined using tleeumented

to check. The documented semantic of a function musinterface. Legitimate uses of interfaces should not be af-
not change. Defining “semantic” for any non-trivial func- fected by changes in the implementation; using interfaces
tion is not easy, though. In the next section we try toin an undefined way void the warranty. The same is true
define the requirements of a stable interface. Basicallfor using completely undocumented, internal symbols.

stability means that correct programs which ran in theThose must not be used at all. While this definition of

past continue to run in the future. One of the require-stability is widely accepted it does not mean that avoid-

28 \ersion 1.9 How To Write Shared Libraries

ing or working around changes introduced by changes td@he first method is the oldest and coarsest grained one. It
the implementation is wrong. It just is not necessary ifis implemented by using a different filename for each in-
the achievement of stability comes at a cost. And there isompatible DSO. In ELF binaries dependencies on DSOs
always a cost associated with it. are recorded usin@T_NEEDEDentries in the dynamic
segment. The string associated with the entry has to be
Rejecting stability of undefined functionality is one thing, the name of an existing DSO. It is usually taken from
but what happens if some documented behavior changesRe string associated with theT_SONAMEentry in the
This is happen for various reasons: DSO. Different names can point to different files which
makes coexistence of different DSOs possible and easy.
) _)) But while this method is easy to use and such DSOs can
e The implementation contains a bug. Other |mp|e'easily be produced it has a major drawback. For every re-
mentations produce different results and this is Whafeased version of the DSO which contains an incompati-
people interested in cross-platform compatibility pje change the SONAME would have to be changed. This
are interested in. The old, broken behavior mightcan jead to large numbers of versions of the DSO which
be useful, too. each differ only slightly from each other. This wastes

e Similarly, alignment with standards, revisions of resources especially at run-time'when the running appli-
them, or existing practice in other implementationscat'on need more than one version of the DSO. Another

can promise gains in the future and therefore makProblem is the case when one singl_e applicgtion Io_ads
ing a change is useful. more than one version of the DSO. Th|§ is 9a5|ly possible
if dependencies (other DSOs the application needs) pull
e Functionality of an interface gets extended or re-in independently these different versions. Since the two
duced according to availability of underlying tech- versions of the versioned DSO do not know about each
nology. For instance, the introduction of more ad- other the results can be catastrophic. The only safe way
vanced harddisk drives can handle requests whicltio handle versioning with filenames is to avoid the de-
previous versions cannot handle and these addiscribed situation completely. This is most probably only
tional requests can be exposed through function inpossible by updating all binaries right away which means
terfaces. that effectively no versioning happens. The main advan-
tage of filename versioning is that it works everywhere
and can be used as a fallback solution in case no other
Not making the changes can have negative results angkrsjoning method is available.
making them definitely will have negative results. Mak-
ing the change and still maintaining ABI stability requires A second method with finer grained control was devel-
the use of versioning. oped by Sun for its Solaris OS. In this method DSOs have
internal versioning methods (flename versioning is ob-
But these incompatible changes to a DSO are not the onlyjoysly available on top of them). The internal version-
changes which can cause problems. Adding a new intefing allows to make compatible changes to a DSO while
face does not cause problems for existing applicationsayoiding run-time problems with programs running in en-
But if a new application uses the new interface it will vironments which have only the old version of the DSO
run into problems if at run-time only the old version of 5yjilable. Compatible changes mean adding new inter-
the DSO, the one without the added symbol, is avail-faces or defining additional behavior for existing inter-
able. The user can detect this by forcing the dynamigaces. Each symbol is associated with a version. The
linker to perform all relocations at load-time by defin- \ersions in a file are described by a non-cyclical graph
ing LD_BIND_NOWo an nonempty value in the environ- \yhich forms a hierarchy. If a symbol is associated with a
ment before starting the application. The dynamic linkeryersjon which has a predecessor it means that the proper-
will abort with an error if an old DSO is used. But forc- tjes of the symbol associated with the predecessor version
ing the relocations introduces major performance penalyre also fulfilled. In short: a new version is defined for a
ties (which is the reason why lazy relocations were in-ney release of a DSO whenever new features are added.
troduced in the first place). Instead the dynamic linkerThe interfaces which changed in a compatible way get the
should detect the old DSO version without performing neyw version associated. All the other interfaces must not
the relocations. change and they keep the version they had in the previous
o release.
3.3 ABI Versioning
When the linker uses the versioned DSO to satisfy a de-
o pendency it also records the version of the used sym-
The term "ABI versioning” refers to the process of asso-pg| This way it gets for each DSO a list of required
ciating an ABI with a specific version so that if necessaryyersions. This list is recorded in the binary which is pro-
more than one version of the ABI can be present at anyj,,ceqd. Which this information available it is now easy for
one time. This is no new concept but it was refined overpe gynamic linker to determine at startup-time whether
time and not all possible versioning methods are availablgy| the interfaces the application needs are available in
on all systems.

Ulrich Drepper Version 1.9 29

the version which was used at link-time. To do this the(really only applies to Solaris). Otherwise there is no op-
dynamic linker has to go through the list of all required tion but to change the SONAME for every release with
versions and search in the list définedversions in the incompatible and possible even releases with compati-
referenced DSOs for a matching entry. If no matchingble changes. But the fact that such limited systems ex-
entry is found the DSO used at runtime is incompatibleist shouldnevermake this the only implemented way: if
and the program does not start up. better mechanisms are available they should be used.

While Sun’s extensions help to cope with parts of the3.4 Restricting Exports
stability problem the much larger problem remains to be
solved: how to handle incompatible changes. Every non-
trivial DSO will sooner or later in its lifetime require One of the reasons changes between revisions of a DSO
some incompatible changes even if they are made to comppear incompatible is that users use internal interfaces
rect problems. Some (broken) program might depend of the DSO. This should never happen and usually the
the old method. So far there is only one way out: changefficial interfaces are documented and the internal inter-
the SONAME. faces have special names. Still, many users choose to
ignore these rules and then complain when internal inter-
With Linux's symbol versioning mechanism this is not faces change or go away entirely. There is no justification
necessary. ABIs can normally be kept stable for as longor these complaints but developers can save themselves
as wanted. The symbol versioning mechanism [4] is ama lot of nerves by restricting the set of interfaces which
extension of Sun’s internal versioning mechanism. Theare exported from the DSO.
two main differences are: it is possible to have more than
one definition of a given symbol (the associated versiorsectiod 2.2 introduced the mechanisms available for this.
must differ) and the application or DSO linked with the Now that symbol versioning has been introduced we can
versioned DSO contains not only a list of the requiredextend this discussion a bit. Using symbol maps was in-
version, but also records for each symbol resolved fromroduced as one of the possibilities to restrict the exported
the versioned DSO which version is needed. This infor-symbols. Ideally symbol maps should be used all the
mation can then at runtime be used to pick the right vertime, in addition to the other method chosen. The rea-
sion from all the different versions of the same interface.son is that this allows associating version names with the
The only requirement is that the API (headers, DSO usethterfaces which in turn later allow incompatible changes
for linking, and documentation) is consistent. Every ver-to be made without breaking the ABI. The example map
sioned DSO has at most one version of every APl whickfile in section{ 2.2}4 does not define a version name, it is
can be used at link-time. An API (not ABI) can also van- an anonymous version map. The version defining a ver-
ish completely: this is a way to deprecate APIs withoutsion name would look like this:
affecting binary compatibility.

The only real problem of this approach is that if more VERS_1.0 {

than one version of the same API is used in the same ap- global: index;

plication. This can only happen if the uses are in different local: *;

objects, DSOs or the application itself. From inside one’

object only one version can be accessed. In the last 5+

years this hasn’t been found to be a problem inthe GNU . o .

C library development. If it becomes a problem it can In this example/ERS1.0 is an arbitrarily chosen version

potentially be worked around by changing the implemen-"3M€: As fgr as the static gnd dy”‘.”‘m'c linker are eon-
tation to make it aware of it. Since both versions of theCerned version hames are simply strings. But for mainte-
interface are implemented in the same DSO the versiong2Nce PUrposes itis advised that the fames are chosen to
can coordinate. In general most of the implementation ofnclude the package name and a version number. For the

the different versions is shared and the actual versione&aNU C library project, for instance, the chosen names

interfaces are normally wrappers around a general impIe"Z‘reG‘L'BC*Z'0 ,GLIBC.2.1, etc.
mentation (see below). . .

() 3.5 Handling Compatible Changes (GNU)
If possible projects implementing generally usable DSOs
should use symbol versioning from day one (since the))))
same techniques are used from symbol hiding this is very N€ two basic compatible changes, extending functional-
attractive). Unfortunately this versioning scheme requiredy of an existing interface and introducing a new inter-
changes in the dynamic linker which are currently onlyface, can be handled similarly but not exactly the same
available on Linux and GNU Hun@.lf this is not possi- ~ Way- And we need slightly different code to handle the

ble use Sun’s internal versioning for compatible change4-inux/Hurd and the Solaris way. To exemplify the changes
we extend the example in sectjon]2.2. Thdex func-

S Apparently some of the BSD variants “borrowed” the symbol ver- tipn as_defined cannot handle negative parameters. A ver-
sioning design. They never told me though. sion with this deficiency fixed can handle everything the

30 \ersion 1.9 How To Write Shared Libraries

old implementation can handle but not vice versa. Thereeld versionjndex@VERS 1.0 , would have produced un-
fore applications using the new interface should be prespecified behavior with the old DSO and now it would re-
vented from running if only the old DSO is available. As turn the same as a call tadex@ @VERS.0 . But since
a second change assume that a new funadtidexpl is such a callis invalid anyway nobody can expect this ABI
defined. The code would now look like this when using change to not happen.
Linux/Hurd:
Since this code introduced a new version name the map
file has to change, too.
static int last;

static int next (void) {
return ++last;

} VERS_1.0 {

int index1__ (int scale) { global: ‘index;

CE
return next () << (scale>0 ? scale : 0); . local: *;
} ,
extern int index2__ (int)
i ias (")): VERS_2.0
__attribute ((alias ('index1__")); lobal irfdex- ndexo:
asm(".symver index1__,index@VERS_1.0"), - thdex, ;
B } VERS_1.0;

asm(".symver index2__,index@@VERS_2.0");

int indexpl (int scale) {
return index2__ (scale) + 1,
}
The important points to note here are tmalex is men-
tioned in more than one versioindexpl only appears
Several things need explaining here. First, we do not exin VERS2.0 , thelocal: definitions only appear in the
plicitly define a functiorindex anymore. Insteaiidexl __ VERS1.0 definition, and the definition 6fERS2.0 refers
is defined (note the trailing underscore characters; leado VERS1.0 . The first point should be obvious: we want
ing underscores are reserved for the implementation). Thiwo versions ofindex to be available, this is what the

function is defined using the new semantic. Elern source code says. The second point is also easy to under-
declaration following the function definition is in fact a stand:indexpl is a new function and was not available
definition of an alias for the namiedex1 __.. This is when version 1 of the DSO was released. It is not nec-

gcc's syntax for expressing this. There are other ways®ssary to mark the definition afdexpl in the sources
to express this but this one uses only C constructs whiclwvith a version name. Since there is only one definition
are visible to the compiler. The reason for having thisthe linker is able to figure this out by itself.
alias definition can be found in the following two lines.
These introduce the “magic” to define a versioned sym-The omission of the catch-dlical: * case might be
bol with more than one definition. The assembler pseudoa bit surprising. There is nlocal: case at all in the
op.symver is used to define an alias of a symbol which VERS2.0 definition. What about internal symbols in-
consists of the official naméor @ @and a version name. troduced in version 2 of the DSO? To understand this it
The alias name will be the name used to access the synmust be noted that all symbols matched in ieal:
bol. It has to be the same name used in the original codggart of the version definition do not actually get a ver-
index in this case. The version name must correspondgion name assigned. They get a special internal version
to the name used in the map file (see the example in theame representing all local symbols assigned. So, the
previous section). local: part could appear anywhere, the result would be
the same. Duplicatinpcal: * could possibly confuse
What remains to be explained is the useggind@@The the linker since now there are two catch-all cases. Itis no
symbol defined usingd@s the default definition. There problem to explicitly mention newly introduced but lo-
must be at most one. It is the version of the symbol usedal symbols in thdocal: cases of new versions but it
in all linker runs involving the DSO. No symbol defined is normally not necessary since there always should be a
using @are ever considered by the linker. These are thecatch-all case.
compatibility symbols which are considered only by the
dynamic linker. The fourth point, theVERS1.0 version being referred
to in theVERS2.0 definition, is not really important in
In this example we define both versions of the symbol tasymbol versioning. It marks the predecessor relationship
use the same code. We could have just as well kept thef the two versions and it is done to maintain the similar-
old definition of the function and added the new defini- ities with Solaris’ internal versioning. It does not cause
tion. This would have increased the code size but wouldany problem in might in fact be useful to a human reader
provide exactly the same interface. Code which calls theso predecessors should always be mentioned.

Ulrich Drepper Version 1.9 31

3.6 Handling Compatible Changes (Solaris) The Solaris runtime linker uses the predecessor imple-
mentation to determine when it finds an interface not avail-
able with the version found at link-time. If a applica-

The code changes to the code of the last section to handt®n was linked with the old DSO constructed from the

Solaris’ internal versioning simplify sources and the mapcode above it would referendedex@VERS.1.0 . If the

file. Since there can only be one definition of a symbolnew DSO is found at runtime the version found would

(and since a symbol cannot be removed there is exactlpe index@VERS.2.0 . In case such a mismatch is found

one definition) we do not need any alias and we do nothe dynamic linker looks into the list of symbols and tries

have to mentioindex twice in the map file. The source all predecessors in turn until all are checked or a match

code would look like this: is found. In our example the predecessonv&RS2.0
is VERS1.0 and therefore the second comparison will
succeed.

static int last;

static int next (void) { 3.7 Incompatible Changes

return ++last;

J Incompatible changes can only be handled with the sym-

int index (int scale) { bol versioning mechanism present on Linux and GNU
return next () << (scale>0 ? scale : 0); Hurd. For Solaris one has to fall back to the filename

} versioning method.

int indexpl (int scale) { Coming from the code for the compatible change the dif-

) return index (scale) + 1; ferences are not big. For illustration we pick up the ex-

ample code once again. This time, instead of making a
compatible change to the semanticénolex we change
Note that this only works because the previously definedhe interface.

semantics of thindex function is preserved in the new
implementation. If this would not be the case this changestatic int last:
would not qualify as compatible and the whole discussion '

would be moot. The equally simplified map file looks like gatic int next (void) {

this: return ++last;
}
VERS—.l'O. { int index1__ (int scale) {
local: *; .
¥ return next () << scale;
/ }
VERS_2.0 { . , ,
global: index; indexpl; asm(".symver indexl__,index@VERS_1.0");
} VERS_10; int index2__ (int scale, int *result) {
if (result < O
The change consists of removing tindex entry from Il result >=8 * sizeof (int))
versionVERS1.0 and adding itto/ERS2.0 . This leaves return -1;

*result = index1__ (scale);

no exported symbol in versioiERS1.0 which is OK.)
return O;

It would be wrong to remov&@ERS1.0 altogether after

moving thelocal: * case tovERS2.0 . Even if the asm(".symver index2__index@@VERS_2.0");

move would be done th#ERS1.0 definition must be

kept around since this version is named as the predeces-

sor of VERS2.0 . If the predecessor reference would be The interface ofndex in versionVERS2.0 as imple-

removed as well, programs linked against the old DSOmented inindex2 __ (note: this is the default version as

and referencingndex in versionVERS1.0 would stop can be seen by the tw@in the version definition) is quite

working. Just like symbols, version names must never balifferent and it can easily be seen that programs which

removed. previously return some more or less sensible value now
can crash becauseesult is written to. This parameter

The code in this section has one little problem the codevould contain garbage if the function would be used with

for the GNU versioning model in the previous section an old prototype. Thandex1 __definition is the same as

does not have: the implementation iaflexpl refer- the previousndex implementation. We once again have

ences the public symbaldex and therefore calls it with to define the real function with an alias since tigex

a jump to the PLT (which is slower and possibly allows names get introduced by theymver pseudo-ops.

interposition). The solution for this is left as an exercise

to the user (see sectipn 22.6). It is characteristic for incompatible changes that the im-

32 \ersion 1.9 How To Write Shared Libraries

plementations of the different versions require separatés loaded in and if the context has to provide some call-
code. But as in this case one function can often be implebacks which make the DSO complete, using undefined
mented in terms of the other (the new code using the oldymbols is OK. But this does not extend to definitions
code as itis the case here, or vice versa). from DSOs which use symbol versioning.

The map file for this example looks very much like the The problem is that unless the DSO containing the def-

one for the compatible change: initions is used at link time the linker cannot add a ver-
sion name to the undefined reference. Following the rules
for symbol versioning [4] this means the earliest version

VERS—le. {) available at runtime is used. Going back to the example in
%ggﬁl.%mdex, sectior] 3.V assume the program using the DSO would be

Y C compiled expecting the new interfaioglex2 __. Linking

' happens without the DSO which contains the definition

VERS 2.0 { and the undefined reference will be fiatlex and not
global: index; index@@VERS2.0 . At runtime the dynamic linker will

} VERS_1.0; find an unversioned reference and versioned definitions.

It will then select the oldest definition which happens to
beindex1 __. The result can be catastrophic.
We have two definitions afidex and therefore the name
must be mentioned by the appropriate sections for the twx js therefore highly recommended to never depend on
versions. undefined symbols. The linker can help to ensure this if
-WI,-z,defs is added to compiler command line. If it
It might also be worthwhile pointing out once again that s really necessary to use undefined symbols the newly
the call toindex1 __in index2 __ does not use the PLT pyjit DSO should be examined to make sure that all ref-
and is instead a direct, usually PC-relative, jump. erences to symbols in versioned DSOs are appropriately

marked.
With a simple function definition like the one in this ex-

ample it is no problem at all if different parts of the pro- . . .
gram call different versions of thedex interface. The 3.9 Inter-Object File Relations
only requirement is that the interface the caller saw at
compile time also is the interface the linker found when
handling the relocatable object file. Since the relocatabléart of the ABI is also the relationship between the var-
object file doesot contain the versioning information it ious participating executables and DSOs which are cre-
is not possible to keep object files around and hope th@ted by undefined references. It must be ensured that
right interface is picked by the linker. Symbol versioning the dynamic linker can locate exactly the right DSOs at
only works for DSOs and executables. If it is necessaryprogram start time. The static linker uses the SONAME
to re-link relocatable object files later it is necessary toof a DSO in the record to specify the interdependencies
recreate the link environment the linker would have seerbetween two objects. The information is stored in the
when the code was compiled. The header files (for C, an®T-NEEDEDentries in the dynamic section of the object
whatever other interface specification exists for other lanwith the undefined references. Usually this is only a file
guages) and the DSOs as used by linking together formame, without a complete path. It is then the task of the
the API. It is not possible to separate the two steps, comdynamic linker to find the correct file at startup time.
piling and linking.
This can be a problem, though. By default the dynamic
3.8 Using Versioned DSOs linker only looks into a few directories to find DSOs (on
Linux, in exactly two directorieg)io and/usr/ib).
More directories can be added by naming them in the
All methods which depend on symbol versioning have/etc/ld.so.conf file which is always consulted by
one requirement in common: it is absolutely necessaryhe dynamic linker. Before starting the application, the
for the users of the DSO to always link with it. This user can add.D_LIBRARY_PATHto the environment of
might sound like a strange requirement but it actually isthe process. The value is another list of directories which
not since the when creating DSOs it is not necessary tare looked at.
provide definitions for all references. l.e., the linker is
perfectly happy if a symbol is completely undefined in But all this means that the selection of the directories is
a DSO. It is only the dynamic linker which would com- under the control of the administrator. The program’s au-
plain: if no object is in scope which defines the undefinedthor can influence these setting only indirectly by doc-
symbol the lookup fails. umenting the needs. But there is also way for the pro-
grammer to decide the path directly. This is sometimes
This method is sometimes, rarely, a useful method. If amportant. The system’s setting might not be usable by
DSO is behaving differently depending on the context itall programs at the same time.

Ulrich Drepper Version 1.9 33

For each object, DSO as well as executable, the authdike /usr/lib/someapp are not “relocatable”. l.e., the
can define a “run path”. The dynamic linker will use the package cannot be installed in another place by the user
value of the path string when searching for dependenciewithout playing tricks like creating symbolic links from
of the object the run path is defined in. Run paths comegusr/lib/someapp to the real directory. The use of rel-
is two variants, of which one is deprecated. The runpathstive paths is possible, but highly discouraged. It might
are accessible through entries in the dynamic section ase OK in application which always control their CWD,
field with the tagDT.RPATHandDT_.RUNPATHThe dif- butin DSOs which are used in more than one application
ference between the two value is when during the searchsing relative paths means calling for trouble since the
for dependencies they are used. THeRPATHvalue is application can change the CWD.
used first, before any other path, specifically before the
path defined in theD_LIBRARY_PATHenvironment vari- A solution out of the dilemma is an extension syntax for
able. This is problematic since it does not allow the usemll search paths (run paths, but alSnLIBRARY_PATH.
to overwrite the value. Therefor@T.RPATHis depre- If one uses the strin§ORIGIN this will represent the ab-
cated. The introduction of the new variab RUNPATH solute path of the directory the file containing this run
corrects this oversight by requiring the value is used aftepath is in. One common case for using this “dynamic
the path inLD_LIBRARY_PATH string token” (DST) is a program (usually installed in a
bin/ directory) which comes with one or more DSOs it
If both a DT.RPATHand aDT_RUNPATHentry are avail- needs, which are installed in the correspondig di-
able, the former is ignored. To add a string to the runrectory. For instance the paths could/bia and/lib
path one must use thepath or -R for the linker. l.e., or /usr/bin and/usr/lib . In such a case the run
on the gcc command line one must use something like path of the application could conta§©ORIGIN/../lib
which will expand in the examples case just mentioned
gcc -WI,-rpath,/some/dir:/dir2 file.o to /bin/../Nlib and /usr/bin/../lib respectively.
The effective path will therefore point to the appropriate
This will add the two named directories to the run pathlib/ directory.
in the order in which say appear on the command line. If
more than onerpath /-R option is given the parameters $ORIGIN is not the only DST available. The GNU libc
will be concatenated with a separating colon. The ordedynamic currently recognizes two more. The firsilitB
is once again the same as on the linker command linewhich is useful on platforms which can run in 32- and 64-
For compatibility reasons with older version of the linker bit mode (maybe more in future). On such platforms the
DT_RPATHentries are created by default. The linker op-replacement value in 32-bit binarieslis and for 64-

tion --enable-new-dtags must be used to also add bit binaries it islib64 . This is what the system ABIs
DT_RUNPATHentry. This will cause botlDT.RPATHand specify as the directories for executable code. If the plat-
DT_RUNPATHenNtries, to be created. form does not know more than one mode the replacement

value islib . This DST makes it therefore easy to write
There are a number of pitfalls one has to be aware oMakefiles creating the binaries since no knowledge about
when using run paths. The first is that an empty paththe differentiation is needed.
represents the current working directory (CWD) of the
process at runtime. One can construct such an empty pafthe last DST isSPLATFORMIt is replaced by the dy-
by explicitly adding such a parametew(,-R,”) but namic linker with an architecture-specific string repre-
also, and this is the dangerous part, by two consecutiveenting the name of the platform (as the name suggests).
colons or a colon at the beginning or end of the string.For instance, it will be replaced witi386 or i686 on
That means the run path value ":/home::/usr:” searche$A-32 machines, depending on the CPU(s) used. This al-
the CWD, home, the CWD againusr , and finally the lows using better optimized versions of a DSO if the CPU
CWD agairﬂ Itis very easy to add such an empty path. supports it. On system with the GNU libc this is gener-
Makefiles often contain something like this: ally not needed since the dynamic linker by itself and by
default looks for such subdirectories. The actual rules are
quite complicated and not further discussed here. What
RPATH = $(GLOBAL_RPATH):$(LOCAL\ _RPATH) is important to remember is that tS€LATFORMDST is
LDFLAGS += -WI,-rpath,$(RPATH) not really useful; it is mainly available for compatibility
with Solaris’s dynamic linker.

If either GLOBALRPATHOr LOCALRPATHIs empty the
dynamic linker will be forced to look in the CWD. When
constructing strings one must therefore always be careful
about empty strings.

The second issue run paths have is that either that paths

10The dynamic linker is of course free to avoid the triple search since
after the first one it knows the result.

34 \ersion 1.9 How To Write Shared Libraries

A Counting Relocations

The following script computes the number of normal and relative relocations as well as the number of PLT entries
present in a binary. In an appropriateadelf implementation is used it can also be used to look at all files in an
archive.

#!' [usr/bin/perl
eval "exec /usr/bin/perl -S $0 $*"
if O;
Copyright (C) 2000, 2001, 2002, 2003 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>, 2000.

H*

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */

HoH R HEH R HEH R HHH

for ($cnt = $cnt <= $#ARGV; ++$cnt) {
$relent =

$relsz =

$relcount 0;

$pltrelsz = 0;

0;
0;

open (READELF, "readelf -d $ARGV[$cnt] |") || die "cannot open $ARGV[$cnt]";
while (<READELF>) {
chop;
if (/.* \(RELENT\) *([0-9]%).*/) {
$relent = $1 + 0O;
} elsif (/.* (RELSZ\) *([0-9]%).*/) {
$relsz = $1 + O;
} elsif (/.* ((RELCOUNT\) *([0-9]%).*/) {
$relcount = $1 + O;
} elsif (/.* \(PLTRELSZ\) *([0-9]%).*/) {
$pltrelsz = $1 + 0O;
}
}
close (READELF);
printf ("%s: %d relocations, %d relative (%d%%), %d PLT entries\n",
$ARGV[$cnt], $relent == 0 ? 0 : $relsz / $relent, $relcount,

$relent == 0 ? 0 : (100 * $relcount) / ($relsz / $relent),
$relent == 0 ? 0 : SPpltrelsz / $relent);

Ulrich Drepper Version 1.9 35

B Automatic Handler of Arrays of String Pointers

The method to handle arrays of string pointers presented in s¢cfioh 2.4.3 show the principle method to construct data
structures which do not require relocations. But the construction is awkward and error-prone. Duplicating the strings
in multiple places in the sources always has the problem of keeping them in sync.

Bruno Haibleé suggested the following automatic way of generating the tables. The programmer only has to add the
strings, appropriately marked, to a data file which is used in the compilation. The framework in the actual sources
looks like this:

#include <stddef.h>

#define MSGSTRFIELD(line) MSGSTRFIELD1(line)
#define MSGSTRFIELD1(line) str##line

static struct msgstr_t {

#define _S(n, s) char MSGSTRFIELD(__LINE_)[sizeof(s)];
#include "stringtab.h"

#undef _S

} msgstr = {

#define _S(n, s) s,

#include "stringtab.h"

#undef _S

h

static int msgidx[] = {

#define _S(n, s) [n] = offsetof(struct msgstr_t, MSGSTRFIELD(__LINE_)),
#include "stringtab.h"

#undef _S

k

const char *errstr (int nr) {
return (char*)&msgstr + msgidx[nr];

}

The string data has to be provided in the fitengtab.n . For the example from secti¢n 2.4.3 the data would look
like this:

_S(ERR1, "message for errl")
_S(ERR3, "message for err3")
_S(ERR2, "message for err2")

The macro.S takes two parameters: the first is the index used to locate the string and the second is the string itself.
The order in which the strings are provided is not important. The value of the first parameter is used to place the offset
in the correct slot of the array. It is worthwhile running these sources through the preprocessor to see the results. This
way of handling string arrays has the clear advantage that strings have to be specified only in one place and that the
order they are specified in is not important. Both these issues can otherwise easily lead to very hard to find bugs.

36 \ersion 1.9 How To Write Shared Libraries

mailto:bruno@clisp.org

C References

[1] System V Application Binary Interface, |http://www.caldera.com/developers/gabi/, 2001.
[2] Ulrich Drepper,ELF Handling For Thread-Local Storage, |http://people.redhat.com/drepper/tls|pdf, 2003.

[3] Ulrich Drepper,Good Practices in Library Design, Implementation, and Maintenance,
http://people.redhat.com/drepper/goodpractices.pdf, 2002.

[4] Ulrich Drepper,ELF Symbol Versioning, http://people.redhat.com/drepper/symbol-versioning, 1999.
[5] Sun Microsystemd.inker and Library Guide, |http://docs.sun.com/db/doc/816-1386, 2002.

[6] TIS Committee Executable and Linking Format (ELF) Specification, Version 1.2,
http://x86.ddj.com/ftp/manuals/tools/elf.pdf, 1995.

D Revision History

2002-11-2First public draft.

2002-11-8Fixed a couple of typos.
Document one more possibility for handling arrays of string pointers.
Describe PLT on IA-32 in more details.

2002-11-14Document implications of using C++ virtual functions.

2003-1-20Incorporate several suggestions by Bruno Haible.
Describe visibility attribute and aliasing in C++ code.

2003-2-9 Some more cleanups. Version 1.0 release.

2003-2-27 Minor language cleanup. Describe using export maps with C++. Version 1.1.

2003-3-18 Some more linguistic changes. Version 1.2.

2003-4-4 Document how to write constructor/destructors. Version 1.3.

2003-12-8 Describe how to use run paths. Version 1.4.

2003-12-9 Add section about avoided PIC reload. Version 1.5.

2004-2-4 Fix some typos. Explain optimizations gcc does withdpit . Explain-z relro

2004-2-8 Introduce the lookup scope in more details. Version 1.9.

. Version 1.7.

Ulrich Drepper Version 1.9

37

http://www.caldera.com/developers/gabi/
http://people.redhat.com/drepper/tls.pdf
http://people.redhat.com/drepper/goodpractices.pdf
http://people.redhat.com/drepper/symbol-versioning
http://docs.sun.com/db/doc/816-1386
http://x86.ddj.com/ftp/manuals/tools/elf.pdf
mailto:bruno@clisp.org

	1 Preface
	1.1 A Little Bit of History
	1.2 The Move To ELF
	1.3 How Is ELF Implemented?
	1.4 Startup: In The Kernel
	1.5 Startup in the Dynamic Linker
	1.5.1 The Relocation Process
	1.5.2 Symbol Relocations
	1.5.3 Lookup Scope
	1.5.4 GOT and PLT
	1.5.5 Running the Constructors

	1.6 Summary of the Costs of ELF
	1.7 Measuring ld.so Performance

	2 Optimizations for DSOs
	2.1 Data Definitions
	2.2 Export Control
	2.2.1 Use static
	2.2.2 Define Visibility
	2.2.3 Define Visibility for C++ Class Members
	2.2.4 Use Export Maps
	2.2.5 Libtool's -export-symbols
	2.2.6 Avoid Using Exported Symbols

	2.3 Shortening Symbol Names
	2.4 Choosing the Right Type
	2.4.1 Pointers vs. Arrays
	2.4.2 Forever const
	2.4.3 Arrays of Data Pointers
	2.4.4 Arrays of Function Pointers
	2.4.5 C++ Virtual Function Tables

	2.5 Improving Generated Code
	2.6 Increasing Security

	3 Maintaining APIs and ABIs
	3.1 What are APIs and ABIs?
	3.2 Defining Stability
	3.3 ABI Versioning
	3.4 Restricting Exports
	3.5 Handling Compatible Changes (GNU)
	3.6 Handling Compatible Changes (Solaris)
	3.7 Incompatible Changes
	3.8 Using Versioned DSOs
	3.9 Inter-Object File Relations

	A Counting Relocations
	B Automatic Handler of Arrays of String Pointers
	C References
	D Revision History

