
august 2008 | vol. 51 | no. 8 | communications of the acm 31

V
viewpoints

Don switches gears and for
a while and becomes what Ed
Feigenbaum calls “The World’s
Greatest Programmer.”
There was a revolutionary new way to
write programs that came along in
the 1970s called “structured program-
ming.” At Stanford we were teaching
students how to write programs, but we
had never really written more than text-
book code ourselves in this style. Here
we are, full professors, telling people
how to do it, but having never done it
ourselves except in really sterile cases
with no real-world constraints. I was
itching to do it. Thank you for calling
me the world’s greatest programmer—
I was always calling myself that in my
head. I love programming, and so I loved
to think that I was doing it as well as any-
body. But the fact is the new way of pro-
gramming was something that I hadn’t
had time to invest much effort in.

The motivation is his love
affair with books…
That goes very deep. My parents dis-
obeyed the conventional wisdom by
teaching me to read before I entered
kindergarten. I have a kind of strange
love affair with books going way back.
I also had this thing about the appear-
ance of books. I wanted my books to
have an appearance that other readers
would treasure, not just appreciate be-
cause there were some words in there.

…and what had happened
to his books.
Printing was done with hot lead in the
1960s, but they switched over to using
film in the 1970s. My whole book had
been completely re-typeset with a differ-
ent technology. The new fonts looked
terrible! The subscripts were in a differ-
ent style from the large letters, for exam-
ple, and the spacing was very bad. You
can look at books printed in the early
1970s and almost everything looked
atrocious in those days. I couldn’t stand
to see my books so ugly. I spent all this
time working on them, and you can’t
be proud of something that looks hope-
less. I was tearing out my hair.

At the very same time, in February
1977, Pat Winston had just come out

with a new book on artificial intelli-
gence, and the proofs of it were being
done at III [Information International,
Incorporated] in Southern California.
They had a new way of typesetting us-
ing lasers. All digital, all dots of ink.
Instead of photographic images and
lenses, they were using algorithms,
bits. I looked at Winston’s galley
proofs. I knew it was just bits, but they
looked gorgeous.

I canceled my plan for a sabbatical
in Chile. I wrote saying “I’m sorry; in-
stead of working on Volume 4 during
my sabbatical, I’m going to work on ty-
pography. I’ve got to solve this problem
of getting typesetting right. It’s only
zeros and ones. I can get those dots on
the page, and I’ve got to write this pro-
gram.” That’s when I became an engi-
neer. I did sincerely believe that it was
only going to take me a year to do it.

But, in fact, it was to be a 10-year
project. The prototype user was
Phyllis Winkler, Don’s secretary.
Phyllis had been typing all of my tech-
nical papers. I have never seen her
equal anywhere, and I’ve met a lot of re-
ally good technical typists. My thought
was definitely that this would be some-
thing that I would make so that Phyllis
would be able to take my handwritten
manuscripts and go from there.

The design took place in two all-
nighters. I made a draft. I sat up at the
AI lab one evening and into the early
morning hours, composing what I
thought would be the specifications

doi:10.1145/1378704.1378715	 Len Shustek, Editor

Interview
Donald Knuth:
A Life’s Work Interrupted
In this second of a two-part interview by Edward Feigenbaum, we find Knuth, having completed three
volumes of The Art of Computer Programming, drawn to creating a system to produce books digitally.

For Part I of this interview, see Communications,
July 2008, page 35.P

H
O

T
O

G
R

A
P

H
 B

Y
 T

I
M

O
T

H
Y

 A
R

C
H

I
B

A
L

D

1_CACM_V51.8.indb 31 7/21/08 10:12:55 AM

32 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

of a language. I looked at my book and
I found excerpts from several dozen
pages where I thought it gave all the va-
riety of things I need in the book. Then
I sat down and I thought, well, if I were
Phyllis, how would I like to key this in?
What would be a reasonable format
that would appeal to Phyllis, and at the
same time something that as a com-
piler writer I felt I could translate into
the book? Because TeX is just another
kind of a compiler; instead of going
into machine language you’re going
into words on a page. That’s a different
output language, but it’s analogous to
recognizing the constructs that appear
in the source file.

The programming turned out
to be harder than he thought.
I showed the second version of the de-
sign to two of my graduate students,
and I said, “Okay, implement this,
please, this summer. That’s your sum-
mer job.” I thought I had specified a
language. To my amazement, the stu-
dents, who were outstanding students,
did not complete it. They had a system
that was able to do only about three
lines of TeX. I thought, “My goodness,
what’s going on? I thought these were
good students.” Later I changed my
attitude, saying, “Boy, they accom-
plished a miracle.” Because going
from my specification, which I thought
was complete, they really had an im-
possible task, and they had succeeded
wonderfully with it. These guys were
actually doing great work, but I was
amazed that they couldn’t do what I
thought was just sort of a routine task.
Then I became a programmer in ear-
nest, I had to do it.

This experience led to general
observations about programming
and specifications.
When you’re doing programming, you
have to explain something to a com-
puter, which is dumb. When you’re
writing a document for a human being
to understand, the human being will
look at it and nod his head and say,
“Yeah, this makes sense.” But there
are all kinds of ambiguities and vague-
ness that you don’t realize until you
try to put it into a computer. Then all
of a sudden, almost every five minutes
as you’re writing the code, a question
comes up that wasn’t addressed in the

specification. “What if this combina-
tion occurs?” It just didn’t occur to
the person writing the design specifi-
cation. When you’re faced with doing
the implementation, a person who
has been delegated the job of working
from a design would have to say, “Well,
hmm, I don’t know what the designer
meant by this.”

It’s so hard to do the design unless
you’re faced with the low-level aspects
of it, explaining it to a machine in-
stead of to another person. I think it
was George Forsythe who said, “People
have said you don’t understand some-
thing until you’ve taught it in a class.
The truth is you don’t really under-
stand something until you’ve taught it
to a computer, until you’ve been able
to program it.” At this level, program-
ming was absolutely important.

When I got to actually program-
ming TeX, I had to also organize it so
that it could handle lots of text. I had to
develop a new data structure in order
to be able to do the paragraph coming
in text and enter it in an efficient way.
I had to introduce ideas called “glue,”
and “penalties,” and figure out how
that glue should disappear at bound-

aries in certain cases and not in oth-
ers. All these things would never have
occurred to me unless I was writing the
program.

Edsger Dijkstra gave this wonderful
Turing lecture early in the 1970s called
“The Humble Programmer.” One of
the points he made in his talk was that
when they asked him in Holland what
his job title was, he said, “Program-
mer,” and they said, “No, that’s not a
job title. You can’t do that; program-
mers are just coders. They’re people
who are assigned like scribes were in
the days when you needed somebody
to write a document in the Middle
Ages.” Dijkstra said no, he was proud
to be a programmer. Unfortunately, he
changed his attitude completely, and I
think he wrote his last computer pro-
gram in the 1980s.

I checked the other day and found I
wrote 35 programs in January, and 28
or 29 programs in February. These are
small programs, but I have a compul-
sion. I love to write programs. I think
of a question that I want to answer, or
I have part of my book where I want
to present something, but I can’t just
present it by reading about it in a book.
As I code it, it all becomes clear in my
head. The fact that I have to translate
my knowledge of this method into
something that the machine is going
to understand forces me to make that
knowledge crystal-clear in my head.
Then I can explain it to somebody
else infinitely better. The exposition
is always better if I’ve implemented it,
even though it’s going to take me more
time.

It didn’t occur to me at the time
that I just had to program in order to
be a happy man. I didn’t find my other
roles distasteful, except for fundrais-
ing. I enjoyed every aspect of being a
professor except dealing with propos-
als, which was a necessary evil. But I
wake up in the morning with an idea,
and it makes my day to think of add-
ing a couple of lines to my program. It
gives me a real high. It must be the way
poets feel, or musicians, or painters.
Programming does that for me.

The TeX project led to
METAFONT for the design of fonts.
But it also wasn’t smooth sailing.
Graphic designers are about the nic-
est people I’ve ever met in my life. In

“I wake up in the
morning with
an idea, and it
makes my day
to think of adding
a couple of lines
to my program.
It gives me a real
high. It must be
the way poets
feel, or musicians,
or painters.
Programming
does that for me.”

1_CACM_V51.8.indb 32 7/21/08 10:12:55 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 33

the spring of 1977, I could be found
mostly in the Stanford Library reading
about the history of letter forms. Be-
fore I went to China that summer I had
drafted the letters for A to Z.

One of the greatest disappoint-
ments in my whole life was the day I
received in the mail the new edition of
The Art of Computer Programming Vol-
ume 2, which was typeset with my fonts
and which was supposed to be the
crowning moment of my life, having
succeeded with the TeX project. I think
it was 1981, and I had the best typeset-
ting equipment, and I had written a
program for the 8-bit microprocessor
inside. It had 5,000 dots-per-inch, and
all the proofs coming out looked good
on this machine. I went over to Addi-
son-Wesley, who had typeset it. There
was the book, and it was in the familiar
beige covers. I opened the book up and
I’m thinking, “Oh, this is going to be
a nice moment.” I had Volume 2, first
edition. I had Volume 2, second edi-
tion. They were supposed to look the
same. Everything I had known up to
that point was that they would look the
same. All the measurements seemed
to agree. But a lot of distortion goes
on, and our optic nerves aren’t linear.
All kinds of things were happening. I

“I found that
writing software
was much more
difficult than
anything else I had
done in my life. I had
to keep so many
things in my head
at once. I couldn’t
just put it down
and start something
else. It really took
over my life during
this period.”

P
H

O
T

O
G

R
A

P
H

 B
Y

 T
I

M
O

T
H

Y
 A

R
C

H
I

B
A

L
D

1_CACM_V51.8.indb 33 7/21/08 10:12:56 AM

34 communications of the acm | august 2008 | vol. 51 | no. 8

viewpoints

burned with disappointment. I really
felt a hot flash, I was so upset. It had to
look right, and it didn’t, at that time.
I’m happy to say that I open my books
now and I like what I see. Even though
they don’t match the 1968 book ex-
actly, the way they differ are pleasing
to me.

What it was like writing TeX.
Structured programming gave me a
different feeling from programming
the old way—a feeling of confidence
that I didn’t have to debug something
immediately as I wrote it. Even more
important, I didn’t have to mock-up
the unwritten parts of the program. I
didn’t have to do fast prototyping or
something like that, because when you
use structured programming method-
ology you have more confidence that
it’s going to be right, that you don’t
have to try it out first. In fact, I wrote all
of the code for TeX over a period of sev-
en months, before I even typed it into a
computer. It wasn’t until March 1978
that I spent three weeks debugging ev-
erything I had written up to that time.

I found that writing software was
much more difficult than anything
else I had done in my life. I had to keep
so many things in my head at once. I
couldn’t just put it down and start
something else. It really took over my
life during this period. I used to think
there were different kinds of tasks:
writing a paper, writing a book, teach-
ing a class, things like that. I could
juggle all of those simultaneously. But
software was an order of magnitude
harder. I couldn’t do that and still teach
a good Stanford class. The other parts
of my life were largely on hold, includ-
ing The Art of Computer Programming.
My life was pretty much typography.

TeX leads to a new way
of programming.
Literate programming, in my mind,
was the greatest spin-off of the TeX
project. I learned a new way to program.
I love programming, but I really love
literate programming. The idea of lit-
erate programming is that I’m writing
a program for a human being to read
rather than a computer to read. It’s
still a program and it’s still doing the
stuff, but I’m a teacher to a person. I’m
addressing my program to a thinking
being, but I’m also being exact enough

so that a computer can understand it
as well. Now I can’t imagine trying to
write a program any other way.

As I’m writing The Art of Computer
Programming, I realized the key to
good exposition is to say everything
twice: informally and formally. The
reader gets to lodge it in his brain in
two different ways, and they reinforce
each other. In writing a computer pro-
gram, it’s also natural to say everything
in the program twice. You say it in Eng-
lish, what the goals of this part of the
program are, but then you say it in your
computer language. You alternate be-
tween the informal and the formal. Lit-
erate programming enforces this idea.

In the comments you also explain
what doesn’t work, or any subtleties.
You can say, “Now note the following.
Here is the tricky part in line 5, and
it works because of this.” You can ex-
plain all of the things that a maintainer
needs to know. All this goes in as part
of the literate program, and makes
the program easier to debug, easier to
maintain, and better in quality.

After TeX, Don gets to go back
to mathematics.
We finished the TeX project; the cli-
max was in 1986. After a sabbatical in
Boston I came back to Stanford and
plunged into what I consider my main
life’s work: analysis of algorithms.
That’s a very mathematical thing,
and so instead of having font design
visitors to my project, I had great al-
gorithmic analysts visiting my project.
I started working on some powerful
mathematical approaches to analysis
of algorithms that were unheard of in
the 1960s when I started the field. Here

I am in math mode, and thriving on
the beauties of this subject.

One of the problems out there that
was fascinating is the study of random
graphs. Graphs are one of the main fo-
cuses of Volume 4, all the combinato-
rial algorithms, because they’re ubiq-
uitous in applications.

Frustrated with the rate of
progress, he “retires” to devote
himself to “The Art.”
I wasn’t really as happy as I let on. I
mean, I was certainly enjoying the re-
search I was doing, but I wasn’t making
any progress at all on Volume 4. I’m do-
ing this work on random graphs, and
I’m learning all of these things. But at
the end of the year, how much more
had been done? I’ve still got 11 feet of
preprints stacked up in my closet that
I haven’t touched, because I had to put
that all on hold for the TeX project. I
figured the thing that I’m going to be
able to do best for the world is finish-
ing The Art of Computer Programming.

The only way to do it was to stop be-
ing a professor full time. I really had
to be a writer full time. So, at age 55 I
became “Professor Emeritus of The
Art of Computer Programming,” with
a capital “T.” I love that title.

Don is a master at straddling
the path between engineering
and science.
I always thought that the best way to
sum up my professional work is that it
has been an almost equal mix of theory
and practice. The theory I do gives me
the vocabulary and the ways to do prac-
tical things that can make giant steps
instead of small steps when I’m doing
a practical problem. The practice I do
makes me able to consider better and
more robust theories, theories that
are richer than if they’re just purely
inspired by other theories. There’s
this symbiotic relationship between
those things. At least four times in my
life when I was asked to give a kind of
philosophical talk about the way I look
at my professional work, the title was
“Theory and Practice.” My main mes-
sage to the theorists is, “Your life is
only half there unless you also get nur-
tured by practical work.”

Software is hard. My experience with
TeX taught me to have much more ad-
miration for colleagues that are devot-

“At age 55 I
became ‘Professor
Emeritus of The
Art of Computer
Programming,’
with a capital ‘T.’
I love that title.”

1_CACM_V51.8.indb 34 7/21/08 10:12:56 AM

viewpoints

august 2008 | vol. 51 | no. 8 | communications of the acm 35

ing most of their life to software than I
had previously done, because I didn’t
realize how much more bandwidth of
my brain was being taken up by that
work than it was when I was doing just
theoretical work.

Computers aren’t everything:
religion is part of his life, too.
I think computer science is wonder-
ful, but it’s not everything. Through-
out my life I’ve been in a very loving
religious community. I appreciate
Luther as a theologian who said you
don’t have to close your mind. You
keep questioning. You never know the
answer. You don’t just blindly believe
something.

I’m a scientist, but on Sundays I
would study with other people of our
church on aspects of the Bible. I got
this strange idea that maybe I could
study the Bible the way a scientist
would do it, by using random sam-
pling. The rule I decided on was we
were going to study Chapter 3, Verse
16 of every book of the Bible.

This idea of sampling turned out
to be a good time-efficient way to get
into a complicated subject. I actually
got too confident that I knew much
more than I actually had any right to,
because I’m only studying less than
1/500th of the Bible. But a classical
definition of a liberal education is that
you know everything about something
and something about everything.a

On his working style...
I enjoy working with collaborators,
but I don’t think they enjoy working
with me, because I’m very unreliable. I
march to my own drummer, and I can’t
be counted on to meet deadlines be-
cause I always underestimate things.
I’m not a great coworker, and I’m very
bad at delegating.

I have no good way to work with
somebody else on tasks that I can do
myself. It’s a huge skill that I lack.
With the TeX project I think it was
important, however, that I didn’t del-
egate the writing of the code. I needed
to be the programmer on the first-gen-
eration project, and I needed to write
the manual, too. If I delegated that,
I wouldn’t have realized some parts

a	 See 3:16 Bible Texts Illuminated, by Donald
Knuth, A-R Editions, 1991.

of it are impossible to explain. I just
changed them as I wrote the manual.

What is the future
 of programming?
A program I read when I was in my first
year of programming was the SOAP II
assembler by Stan Poley at IBM. It was a
symphony. It was smooth. Every line of
code did two things. It was like seeing a
grand master playing chess. That’s the
first time I got a turn-on saying, “You
can write a beautiful program.” It had
an important effect on my life.

I’m worried about the present state
of programming. Programmers now
are supposed to mostly just use librar-
ies. Programmers aren’t allowed to do
their own thing from scratch anymore.
They’re supposed to assemble reus-
able code that somebody else has writ-
ten. There’s a bunch of things on the
menu and you choose from these and
put them together. Where’s the fun in
that? Where’s the beauty in that? We
have to figure out a way we can make
programming interesting for the next
generation of programmers.

What about the future of science
and engineering generally?
Knowledge in the world is exploding.
Up until this point we had subjects,
and a person would identify them-
selves with what I call the vertices of a
graph. One vertex would be mathemat-
ics. Another vertex would be biology.

Another vertex would be computer sci-
ence, a new one. There would be a phys-
ics vertex, and so on. People identified
themselves as vertices, because these
were the specialties. You could live in
that vertex, and you would be able to
understand most of the lectures that
were given by your colleagues.

Knowledge is growing to the point
where nobody can say they know all of
mathematics, certainly. But there’s so
much interdisciplinary work now. We
see that a mathematician can study
the printing industry, and some of the
ideas of dynamic programming ap-
ply to book publishing. Wow! There
are interactions galore wherever you
look. My model of the future is that
people won’t identify themselves with
vertices, but rather with edges—with
the connections between. Each per-
son is a bridge between two other ar-
eas, and they identify themselves by
the two subspecialties that they have
a talent for.

Finally, we always ask
for life advice.
When I was working on typography, it
wasn’t fashionable for a computer sci-
ence professor to do typography, but I
thought it was important and a beauti-
ful subject. Other people later told me
that they’re so glad I put a few years
into it, because it made it academically
respectable, and now they could work
on it themselves. They were afraid
to do it themselves. When my books
came out, they weren’t copies of any
other books. They always were some-
thing that hadn’t been fashionable to
do, but they corresponded to my own
perception of what ought to be done.

Don’t just do trendy stuff. If some-
thing is really popular, I tend to think:
back off. I tell myself and my students
to go with your own aesthetics, what
you think is important. Don’t do what
you think other people think you want
to do, but what you really want to do
yourself. That’s been a guiding heuris-
tic for me all the way through.

And it should for the rest of us.
Thank you, Don.�

Edited by Len Shustek, Chair, Computer History Museum,
Mountain View, CA.

© 2008 ACM 0001-0782/08/0800 $5.00

“I’m worried about
the present state
of programming.
Programmers now
are … supposed to
assemble reusable
code that somebody
else has written…
Where’s the fun in
that? Where’s the
beauty in that?”

1_CACM_V51.8.indb 35 7/21/08 10:12:56 AM

