
V
viewpoints

JULY 2008 | vol. 51 | no. 7 | communications of the acm 35

P
H

O
T

O
G

R
A

P
H

 B
Y

 T
I

M
O

T
H

Y
 A

R
C

H
I

B
A

L
D

scared that I was going to flunk out, but
still I was ready to work.

He initially aspired to be
a physicist, but something
happened along the way.
In my sophomore year in physics I
had to take a required class of weld-
ing. Welding was so scary and I was
a miserable failure at it, so I decided
maybe I can’t be a physicist. On the
other hand—mathematics! In the
sophomore year for mathematicians,
they give you courses on what we now
call discrete mathematics, where you
study logic and things that are integers
instead of continuous quantities. I was
drawn to that. That was something,
somehow, that had great appeal to me.

I think that there is something
strange inside my head. It’s clear that
I have much better intuition about dis-
crete things than continuous things. In
physics, for example, I could pass the
exams and I could do the problems in
quantum mechanics, but I couldn’t in-
tuit what I was doing. But on the other
hand, in my discrete math class, these
were things that really seemed a part
of me. There’s definitely something in
how I had developed by the time I was
a teenager that made me understand
discrete objects, like zeros and ones
of course, or things that are made out
of alphabetical letters, much better
than things like Fourier transforms
or waves.

I’m visualizing the symbols. To me,
the symbols are reality, in a way. I take

doi: 10.1145/1364782.1364794	 Len Shustek

T
he Computer History Mu-
seum has an active program
to gather videotaped histo-
ries from people who have
done pioneering work in

this first century of the information
age. These tapes are a rich aggregation
of stories that are preserved in the col-
lection, transcribed, and made available
on the Web to researchers, students,
and anyone curious about how inven-
tion happens.

The oral histories are conversations
about people’s lives. We want to know
about their upbringing, their families,
their education, and their jobs. But
above all, we want to know how they
came to the passion and creativity that
leads to innovation.

Presented here in two installments
(concluding next month) are excerptsa
from an interview conducted by Ed-
ward Feigenbaum in March 2007 of
Donald E. Knuth, Professor Emeritus of
The Art of Computer Programming at
Stanford University.	 — L. S.

Don talks about his
family background.
My father was the first person among
all his ancestors who had gone to col-
lege. My mother was the first person in
all of her ancestors who had gone to a

a	 Oral histories are not scripted, and a transcript
of casual speech is very different from what
one would write. I have taken the liberty of
editing and reordering freely for presentation.
For the original transcript, see http://archive.
computerhistory.org/search/oh/

year of school to learn how to be a typist.
My great-grandfather was a blacksmith.
There was no tradition in our family of
higher education at all. These people
were pretty smart, but they didn’t have
an academic background.

Some people know from an early
age what they want to do. Don
didn’t, but he knew he wanted to
work hard.
My main interest in those days was mu-
sic. But at the college where I had been
admitted, people emphasized how easy
it was going to be there as a music ma-
jor. When I got the chance to go to Case
Institute of Technology in Ohio instead,
I was intrigued by the idea that Case
was going to make me work hard. I was

Interview
The ‘Art’ of Being
Donald Knuth
In this first of a two-part talk, the renowned scholar and computer scientist
reflects on the influences that set the course for his extraordinary career.

36 communications of the acm | JULY 2008 | vol. 51 | no. 7

viewpoints

algebraic formula on cards and feed
the cards into the machine. The lights
spin around for a few seconds and then
out come machine language instruc-
tions that set X1 equal to X2 + X4. Au-
tomatic programming coming out of
an algebraic formula! Well, this blew
my mind. I couldn’t understand how it
was possible to do this miracle. I could
understand how to write a program
to factor numbers, but I couldn’t un-
derstand how to write a program that
would convert algebra into machine
instructions.

It hadn’t yet occurred to him
that the computer was a general
symbol-manipulating device?
No. That occurred to Lady [Ada] Love-
lace, but it didn’t occur to me. I’m slow
to pick up on these things, but then I
persevere.

I got hold of the source code for IT.
I went through every line of that pro-
gram. During the summer we typically
had a family get-together on a beach on
Lake Erie where we spent time playing
cards and playing tennis. But that sum-
mer, I spent most of the time going
through this listing, trying to find out
the miracle of how IT worked. Okay,
it wasn’t impossible after all. In fact,
I thought of better ways to do it than
were in that program.

The code, once I saw how it hap-
pened, was inspiring to me. Also, the
discipline of reading other people’s
programs was something good to
learn early. Throughout my life I’ve
had a love of reading source materi-
als—reading something that pioneers
had written and trying to understand
their thought processes, especially
when they’re solving a problem I don’t
know how to solve. This is the best way
for me to get my own brain past the
stumbling blocks. At Case I remem-
ber looking at papers that [Pierre de]
Fermat had written in Latin in the
17th century, in order to understand
how that great number theorist ap-
proached problems.

But it’s been hard to
communicate the love of reading
historical programs.
I would say that’s my major disap-
pointment with my teaching career.
I was not able to get across to any of
my students this love for that kind of

a mathematical problem, I translate it
into formulas, and then the formulas
are the reality.

He discovers computers, and
how hard programming is.
I wrote my first program for the IBM
650 [a vacuum tube magnetic drum
computer from the 1950s], probably
in the spring of my freshman year, and
debugged it at night. The first time I
wrote the program, to find the prime
factors of a number, it was about 60 in-
structions long in machine language.
They were almost all wrong. When I
finished, it was about 120 or 130 in-
structions. I made more errors in this
program than there were lines of code!

My first program taught me a lot
about the errors that I was going to be
making in the future, and also about
how to find errors. That’s sort of the
story of my life, making errors and try-
ing to recover from them. I try to get
things correct. I probably obsess about
not making too many mistakes.

At Case he learns
about early compilers
For the IT (“Internal Translator”) pro-
gram for the 650 you would punch an

scholarship—reading source material.
I was a complete failure at passing this
on to the people that I worked with the
most closely.

He graduates from Case
and becomes a professional
compiler writer while traveling
to the California Institute of
Technology for graduate school.
I had learned about the Burroughs 205
machine language, and it was kind of
appealing to me. So I made my own

My first program
taught me a lot about
the errors that I was
going to be making
in the future, and also
about how to find
errors. That’s sort
of the story of my
life, making errors
and trying to recover
from them. I try to
get things correct.
I probably obsess
about not making too
many mistakes.

viewpoints

JULY 2008 | vol. 51 | no. 7 | communications of the acm 37

P
H

O
T

O
G

R
A

P
H

 B
Y

 T
I

M
O

T
H

Y
 A

R
C

H
I

B
A

L
D

Heading out to California, I drove 100
miles each day and then sat in a motel
and wrote code.

But he rejects “compiler writer”
as a career, and decides what is
important in life.
Then a startup company came to
me and said, “Don, write compil-
ers for us and we will take care of
finding computers to debug them.
Name your price.” I said, “Oh, okay,
$100,000,” assuming that this was

proposal to Burroughs. I said, “I’ll write
you an ALGOL compiler for $5,000. But
I can’t implement all of ALGOL for this;
I am just one guy. Let’s leave out proce-
dures.” Well, this is a big hole in the
language! Burroughs said, “No, you’ve
got to put in procedures.” I said, “Okay,
I will put in procedures, but you’ve got
to pay me $5,500.” That’s what hap-
pened. They paid me $5,500, which was
a fairly good salary in those days. So be-
tween graduating from Case and going
to Caltech, I worked on this compiler.

[outrageous]. The guy didn’t blink.
He agreed. I didn’t blink either. I
said, “I’m not going to do it. I just
thought that was an impossible
number.” At that point I made the
decision in my life that I wasn’t go-
ing to optimize my income.

I spent a day that summer look-
ing at the mathematics of how fast
linear probing works. I got lucky, and
I solved the problem. I figured out
some math, and I kept two or three
sheets of paper with me and I typed

38 communications of the acm | JULY 2008 | vol. 51 | no. 7

viewpoints

He starts The Art of
Computer Programming.
A man from Addison-Wesley came to
visit me and said “Don, we would like
you to write a book about how to write
compilers.” I thought about it and de-
cided “Yes, I’ve got this book inside of
me.” That day I sketched out—I still
have that sheet of tablet paper—12
chapters that I thought should be in
such a book. I told my new wife, Jill,
“I think I’m going to write a book.”
Well, we had just four months of bliss,
because the rest of our marriage has all
been devoted to this book. We still have
had happiness, but really, I wake up ev-
ery morning and I still haven’t finished
the book. So I try to organize the rest of
my life around this, as one main unify-
ing theme.

George Forsythe [founder of the
Computer Science Department at
Stanford] came down to southern Cali-
fornia for a talk, and he said, “Come
up to Stanford. How about joining
our faculty?” I said “Oh no, I can’t do
that. I just got married, and I’ve got to
finish this book first. I think I’ll fin-
ish the book next year, and then I can
come up [and] start thinking about the
rest of my life. But I want to get my book
done before my son is born.” Well, John
is now 40-some years old and I’m not
done with the book.

This is really the story of my life,
because I hope to live long enough
to finish it. But I may not because it’s
turned out to be such a huge project.

1967 was a big year.
It was certainly a pivotal year in my life.
You can see in retrospect why I think
things were building up to a crisis, be-
cause I was just working at high pitch
all the time. I was on the editorial board
of Communications of the ACM and
Journal of the ACM—working on their
programming languages sections—
and I took the editorial duties very seri-
ously. I was a consultant to Burroughs
on innovative machines. I was con-
sumed with getting The Art of Computer
Programming done. And I was a father
and husband. I would start out every
day saying “Well, what am I going to ac-
complish today?” Then I would stay up
until I finished it.

It was time for me to make a ca-
reer decision. The question was where
should I spend the rest of my life?

it up.b This became the genesis of
my main research work, which devel-
oped not to be working on compilers,
but to be working on the analysis of
algorithms. It dawned on me that
this was just one of many algorithms
that would be important, and each
one would lead to a fascinating math-
ematical problem. This was easily a
good lifetime source of rich prob-
lems to work on.

If you ask me what makes me
most happy, number one would
be somebody saying “I learned
something from you.” Number two
would be somebody saying “I used
your software.”

At Caltech he finds a mentor,
but can’t talk to him.
I went to Caltech because they had
[strength] in combinatorics, although
their computing system was incred-
ibly arcane and terrible. Marshall
Hall was my thesis advisor. He was a
world-class mathematician, and for a
long time had done pioneering work
in combinatorics. He was my mentor.
But it was a funny thing, because I was
in such awe of him that when I was in
the same room with him I could not
think straight. I wouldn’t remember
my name. I would write down what he
was saying, and then I would go back
to my office so that I could figure it
out. We couldn’t do joint research to-
gether in the same room. We could do
it back and forth.

He also was an extremely good ad-
visor, in better ways than I later was
with my students. He would keep
track of me to make sure I was not
slipping. When I was working with my
own graduate students, I was pretty
much in a mode where they would
bug me instead of me bugging them.
But he would actually write me notes
and say, “Don, why don’t you do such
and such?”

The research for his Ph.D.
thesis takes an hour.
I got a listing from a guy at Princeton
who had just computed 32 solutions
to a problem that I had been looking
at for a homework problem in my com-
binatorics class. I was riding up on the

b	 “Notes on Open Addressing.” Unpublished memoran-
dum, July 22, 1963; but see http://algo.inria.fr/AofA/
Research/11-97.html

elevator with Olga Todd, one of our
professors, and I said, “Mrs. Todd, I
think I’m going to have a theorem in
an hour. I am going to psyche out the
rule that explains why there happen to
be 32 of each kind.” Sure enough, an
hour later I had seen how to get from
each solution on the first page to the
solution on the second page. I showed
this to Marshall Hall. He said, “Don,
that’s your thesis. Don’t worry about
this block design with =2 business.
Write this up instead and get out of
here.” So that became my thesis. And it
is a good thing, because since then only
one more design with =2 has been
discovered in the history of the world.
I might still be working on my thesis if
I had stuck to that problem. But I felt a
little guilty that I had solved my Ph.D.
problem in one hour, so I dressed it up
with a few other chapters of stuff.

He’s never had trouble finding
problems to work on.
The way I work it’s a blessing and
a curse that I don’t have difficulty
thinking of questions. I have to actively
suppress stimulation so that I’m not
working on too many things at once.
The hard thing for me is not to find
a problem, but to find a good problem.
One that will not just be isolated to
something that happens to be true, but
also will be something that will have
spin-offs, so that once you’ve solved
the problem, the techniques are going
to apply to many other things.

If you ask me what
makes me most
happy, number one
would be somebody
saying “I learned
something from you.”
Number two would
be somebody saying
“I used your software.”

viewpoints

JULY 2008 | vol. 51 | no. 7 | communications of the acm 39

Should I be a mathematician? Should
I be a computer scientist? By this time
I had learned that it was actually pos-
sible to do mathematical work as a
computer scientist. I had analysis of
algorithms to do. What would be a
permanent home? My model of my
life was going to be that I was going
to make one move in my lifetime to a
place where I had tenure, and I would
stay there forever.

The crisis comes.
At Caltech, I was preparing my class lec-
tures, or typing my book. I didn’t have
time to do research. If I had a new idea,
if I said “Here’s a problem that ought to
be solved,” when was I going to solve it?
Maybe on the airplane. We were doing a
lot of experiments but I didn’t have time
to sit down at home and work out the
theory for it. I had attribute grammars
coming up in February, and these re-
ductions systems coming up in March,
and I was supposed to be grinding out
Volume Two of The Art of Computer Pro-

gramming. I was scheduled in June to
lecture at a summer school in Copen-
hagen about how to parse, what’s called
top-down parsing.

What happened then, in May, is I
had a massive bleeding ulcer, and I was
hospitalized. My body gave out. I was
just doing all this stuff, and it couldn’t
take it.

I learned about myself. The doc-
tor showed me his textbook that de-
scribed the typical ulcer patient: what
people call the “Type A” personality. It
described me to a T. All of the signs
were there. I was an automaton, I
think, basically. I saw a goal and I put
myself to it, and I worked on it and
pushed it through. I didn’t say no to
people when they asked, “Don, can you
do this for me?” At this point I saw I
had this problem. I shouldn’t try to do
the impossible.

He changes his lifestyle,
and moves to Stanford.
I wrote a letter to my publisher, framed
in black, saying, “I’m not going to be
able to get the manuscript of Volume
Two to you this year. I’m sorry.” I re-
signed from 10 editorial boards. No
more JACM, no more CACM. I gave up
all of the editorships in order to cut
down my workload. I started working
on Volume Two where I left off at the
time of the ulcer, but I would be careful
to go to sleep and keep a regular sched-
ule. I went to a conference in Santa Bar-
bara on combinatorial mathematics
and had three days to sit on the beach
and develop the theory of attribute
grammars, this idea of top-down and
bottom-up parsing.

In February of 1968 I finally got the
offer from Stanford. The committees
were saying, “This guy is just 30 years
old.” But when they looked at the book,
they said, “Oh, there’s some credibility
here.” That helped me.

Why he writes his books with a pencil.
I love keyboards, but my manuscripts
are always handwritten. The reason is
that I type faster than I think. There’s
a synchronization problem. I can think
of ideas at about the rate I can write
them down with a pencil. But with typ-
ing I’m going faster, so I have to sync,
and my thoughts have to start up and
stop again in a way that involves more
of my brain.

Three volumes of “The Art” are
done, but it’s time for a pause.
Volume Four is about combinatorial
algorithms. Combinatorial algorithms
were such a small topic in 1962, when
I made that Chapter Seven of my out-
line, that Johan Dahl asked me, “How
did you ever think of putting in a chap-
ter about combinatorial algorithms in
1962?” I said, “Well, the only reason
was that it was the part I thought was
most fun.” But there was almost noth-
ing known about it at the time.

The way I look at it, this is where
you’ve got to use some art. You’ve got
to be really skillful, because one good
idea can save you six orders of magni-
tude and make your program run a mil-
lion times faster. People are coming up
with these ideas all the time. For me,
the combinatorial explosion was the
explosion of research in combinato-
rics. Not the problems exploding, but
the ideas were exploding. There’s that
much more to cover now.

It’s true that in the back of my mind
I was scared stiff that I can’t write Vol-
ume Four anymore. So maybe I was
waiting for it to simmer down. Some-
body did say to me once, after I solved
the problem of typesetting, maybe I
would start to look at binding or some-
thing, because I had to have some oth-
er reason [to delay]. I’ve certainly seen
enough graduate student procrastina-
tors in my life. Maybe I was in denial.	

He solves the problem of typesetting?
Stay tuned for Part II of this interview
in the August issue and learn how
Knuth interrupted his life’s work on
The Art of Computer Programming to
create a system that makes digitally
produced books beautiful.

Edited by Len Shustek, Chair, Computer History Museum

© 2008 ACM 0001-0782/08/0700 $5.00

I told my new wife,
Jill, “I think I’m
going to write a book.”
Well, we had just
four months of bliss,
because the rest of
our marriage has
all been devoted to
this book. We still
have had happiness,
but really, I wake up
every morning and
I still haven’t finished
the book. So I try
to organize the rest
of my life around
this, as one main
unifying theme.

