
Chapter Ten: W Pleasure, W Fun

C H A P T E R T E N

W Pleasure, W Fun
M A Y – J U N E 1 9 9 8

T he whole point of doing 3D graphics is the third dimension. But since
the screen is only 2D, the third dimension appears only indirectly in

terms of perspective and occlusion. Correct occlusion testing is, however,
fairly sensitive to precision problems in the depth calculation. In this chap-
ter, I will review the traditional way to represent depth and introduce a
new technique that appears in the new generation of 3D graphics boards.
This technique has become practical as a side effect of perspective-correct
texture-mapping hardware. Both ways have their good and bad points, so
I’ll finish up by establishing some rules of thumb on which to choose in a
given situation.

Mathematical Niceties
Mathematical Niceties

T o simplify things a bit in this discussion, I’m not going to include the y
coordinates in any calculations. The problem can be adequately under-

stood in terms of only the x, z, and w coordinates, and the reduction in
dimensionality will simplify things considerably.

Next, let’s define our coordinate systems. There are three of interest
to us:

1. Eye space: All objects are translated so that the eye is at the origin and is
looking down the positive z axis (this, incidentally, is a left-handed co-
ordinate system).

2. Perspective space: This occurs after multiplying points in eye space by a
homogeneous perspective transformation.

3. Screen space: This occurs after dividing out the w component of the
perspective space points.

Finally, there is the question of notation. A mathematical symbol can
convey a lot of information if you give it a chance. The mathematical sym-
bols I use here will designate coordinates of various points in various coor-
dinate systems. The three things, then, that we want to explicitly convey
are

■ The name of the point
■ The component (x, z, or w)
■ The coordinate system

The symbology available to us consists of letters, subscripts, and other
mathematical decorations applied to letters. I will use the following
choices:

■ The component will be designated by the main letter variable: x, z,
or w.

■ The coordinate system will be a decoration over the letter as follows:
x (a bare letter) means eye space

means perspective space before w division
means screen space (perspective space after w division)

Essentially, the number of wiggles over a letter tell how many trans-
formations it has gone through.

■ The name of the point will be a subscript.
For example, the z coordinate of point 0 in perspective space will be de-
noted as Any equations with coordinates that appear without subscripts
will indicate generic relations that apply to all points.

Traditional Perspective
Traditional Perspective

I described the derivation of the homogeneous perspective matrix in
Chapters 3 and 18 of Jim Blinn’s Corner: A Trip Down the Graphics Pipe-

line. If we only consider the x, z, and w components, a typical homoge-
neous perspective matrix looks like

This gives the following generic relations between components in the var-
ious coordinate systems.

148 Chapter Ten: W Pleasure, W Fun

x̂
x�

0ˆ .z

0 0
0
0 0

a
b d
c

 
 
 
  

Eye to perspective:

Perspective to screen:

or, composing these two:
Eye to screen:

A key property of the homogeneous perspective transform is revealed
when we examine what happens to a straight line segment in eye space
when it is transformed into screen space. The line segment generated
by linear interpolation between eye space endpoints and
can be represented by the parametric equation

What does this shape transform into in screen space? Plug in the eye-
to-screen transform equation and we get

At first, this might look fairly mysterious. Our shape is a parametric
curve with the x and z coordinates generated by hyperbolic functions of α.
It never ceases to amaze me that plotting one hyperbola against the other
yields . . . a straight line. Over the years, I have collected various ways to
show this. The simplest is just to solve for alpha and plug that into the
expression for to get a linear equation in and You can never have
too many visualizations, however, so here is another one more appropriate
for the current discussion. The exposition will be easier to manage if we
write the expressions for and as

Traditional Perspective 149

Lx�
Lx�

Lx�

0 0
ˆ ˆˆ1 0

0 0

a
x z b d ax bz c dz x z w

c

 
      = + =      
  

ˆ ˆ
ˆ ˆ
x z

x z
w w
   =   

� �

ax bz c
x z

dz dz
+   =   

� �

0 1 0 0 1 0L Lx z x x x z z z  = +α − +α −   Α Β Α Β

0 1 0 0 1 0

0 1 0 0 1 0
L L

a x x x b z z z c
x z

d z z z d z z z

 +α − +α − +
  = 

+α − +α −  
� �

Χ Α Β∆ Χ Α Β∆
Χ Α Β∆ Χ Α Β∆

L L

A B C D
x z

E F E F
+ α + α

= =
+ α + α

� �

0 0x z   1 1x z  

Lz� .Lz�

Lz�

The key thing to note is that both and have the same denominator.
The reason this is significant is that it places the asymptotes of and
at the same place: α = −F/E. We can therefore move both asymptotes to
the origin by changing the parameterization via the replacement:

α′ = E + Fα

Putting this into the equation gives

Now this is much more obviously the parametric equation of a straight
line segment. And it brings up another important property: equally spaced
points in eye space (equal steps in α, and therefore in α′) transform into
nonequally spaced points in screen space (as evinced by the 1/α′ term).
We’ll make more of this later.

Anyway, we can now see that straight lines transform into straight
lines and, more generally, flat polygons transform into flat polygons. This
means that we can calculate values of at just the triangle vertices and lin-
early interpolate these values in screen space in order to find the proper
value for depth comparisons. A depth buffer implementation of this would
properly be called a buffer in our notation. Figures 10.1(a) and 10.1(b)

150 Chapter Ten: W Pleasure, W Fun

Lx�

1

1

L

L

E
A B B AF BEFx

F F
E

C D D CF DEFz
F F

′α − 
+    −   

= = +      ′ ′α α

′α − 
+    −   

= = +      ′ ′α α

�

�

Lx� Lz�
Lz�

z�

0
1
2
3

4

5
6
7

8

9

10

−5 −4 −3 −2 −1 0 1 2 3 4 5
x

z

(a) (c)(b)

0
0.1

0.2
0.3

0.4

0.5
0.6
0.7

0.8
0.9

1

−1 0 1

z~

x~
−0.5 0.5

0

1

−1 0 1

ŵ

x~
−0.5 0.5

0.1
0.2
0.3

0.4

0.5

0.6
0.7

0.8
0.9

Figure 10.1 Transformation of straight lines in eye space: eye space (a), screen space (b), and space (c)

z�

ŵ

show the distortion induced on a couple of straight segments due to this
perspective transform (ignore Figure 10.1(c) for now).

resolution
Now it’s time to bow to reality and take a look at some resolution issues. If
we use the value of for depth comparisons, how does resolution in
translate into resolution in eye space z? Start with the mapping from eye
space z to screen space We have, generically

In other words, the coordinate is a scale and offset applied to one over
the eye space z coordinate. The values of the scale and offset will deter-
mine the range of values we expect to have to deal with for It is typical to
specify these scales and offsets in terms of two depth values in eye space
called z-near, zn, and z-far, zf , that will map to and A little
brain exercise will show that, in order to make this happen, we must have

Putting these together gives the following, which I’ve written in a whole
buncha different ways:

In a typical application, we would pick zn and zf to bracket our data in
eye space z, set up the matrix appropriately, and throw a bunch of points
down it, knowing we will get values between 0 and 1.

Traditional Perspective 151

f

f n

n f

f n

z
b d

z z

z z
c d

z z

 
 =  − 

 −
 =  − 

z�

.z�

0nz =� 1.fz =�

z� z�

.z�

1bz c b c
z

dz d z d
+    

= = +      
�

1

1 1

1 1

f n f

f n f n

f n

f n

n

n f

bz c
z

dz
z z z

z z z z z

z z z
z z z

z z

z z

+
=

   
   = −   − −   

  − = − 

−
=

−

�

z�

�z

Figure 10.2 shows the mapping from eye
space z to screen space for various values of
zn as a proportion of zf . We note that if zn is
much smaller than zf , the values of are all
smushed together near the value 1, a pros-
pect that is dangerous to the health of our
resolution. The recommended practice is to
make zn as far from the eye as possible. This
gives the more linear relationship of the curve
at the right side of Figure 10.2. Now let’s see
explicitly how the choice of zn affects depth
resolution.

Suppose we use a fixed-point representa-
tion for The values we can represent are
equally spaced along the axis. That’s all very
nice, but it’s physically more meaningful to
see how these quantization bins look in eye

space. We can find these by mapping equal steps in back to the z axis.
The different choices for zn from Figure 10.2 will give the different
quantization spacings shown in Figure 10.3(a) using (for clarity) 16 quan-
tization steps. You can see that a low value for zn gives a rather bad situa-
tion. Detail on objects that are far from the eye can all map into the same
quantized value.

If we happen to use floating point for the situation is even worse.
Here, our 16 quantization steps are more or less logarithmically spaced
along in a way that spreads things out even more at large distances. Fig-
ure 10.3(b) shows the logarithmic spacing of floating-point values exacer-
bating the nonlinear spacing of z values.

152 Chapter Ten: W Pleasure, W Fun

z�

z�

z�

.z�

z�

z�

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

0 1

z~

.9.8.7.6.5.4.3.2.1
z/zf

z 0.5 zn f=

z 0.9 zn f=

z 0.1 zn= f

Figure 10.2 Distortion of for various values of zn

(a)

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

.5 .6 .7 .8 .9 1.0

.9 1.0

zn zf

z�

z�Figure 10.3 Quantization of z space: fixed point (a) and floating point (b)

(b)

zfzn

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

.5 .6 .7 .8 .9 1.0

.9 1.0

,z�

z�

z�

Texture Mapping
Texture Mapping

N ow, off on another tangent for a bit.
If you are performing texture mapping on a triangle, it is necessary to

calculate, for each pixel, the appropriate u, v texture coordinate values. You
generally specify the u and v at triangle vertices with the implicit assump-
tion that they will be linearly interpolated across the triangle in eye space.
That is, u and v are linear functions of eye space x and z. But when render-
ing, we want to calculate u and v as functions of the screen space How
do we do this? I gave one derivation in Chapter 17, “Hyperbolic Interpo-
lation” of Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Here’s a
different one.

What we have is two categories of parameter. The first category is x
and z and any others that are linear functions of x and z. These include
texture coordinates u and v, and perspective space coordinates and
If we linearly interpolate xL and zL by the parameter α according to

then we can find all these other parameters by interpolating with the same
α value:

The second category of parameters consists of the screen space coor-
dinates and which are not simple linear combinations of x and z.
When stepping across a scan line, we interpolate between screen space
endpoints by using uniform steps of β in the formulas.

(10.1)

We desire a relation between α and β. Going back to the definition of
we can write it in terms of α as

Texture Mapping 153

0 1 0

0 1 0

0 1 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
L

L

L

x x x x

w w w w

u u u u

= +α −

= +α −

= +α −

Α Β
Α Β
Α Β

0 1 0

0 1 0

L

L

x x x x

z z z z

= + β −

= + β −

� � � �

� � � �

Α Β
Α Β

x� ,z�

ˆ,x

0 1 0

0 1 0

L

L

x x x x

z z z z

= +α −

= +α −

Α Β
Α Β

ˆ,z ˆ .w

,Lz�

0 1 0

0 1 0

ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ

L
L

L

z z zz
z

w w w w
+α −

= =
+α −

�
Α Β
Α Β

.x�

Now pull in the transformation equations from perspective to screen
space, modified slightly:

so that

Add and subtract to the numerator and fiddle around a while,
and you can convert this to

Comparing this with Equation (10.1) gives us the following relation
connecting interpolation in eye space with interpolation in screen space:

Or, solving for α:

Now we can calculate uL in terms of β. Plug and shuffle to get

Now it’s time to take a deep breath and interpret this result. We calcu-
late the values of and at each endpoint of a line (or at each
vertex of a triangle) and then linearly interpolate these values in screen
space. Divide them to get uL. This mechanism works for any parameter

154 Chapter Ten: W Pleasure, W Fun

0

1 0 1

ˆ
ˆ ˆ ˆ

w
w w w

β
α=

+ β −Α Β

1

0 1 0

ˆ
ˆ ˆ ˆ

w
w w w

α
β=

+α −Α Β

0 1ˆz wα�

1
0 1 0

0 1 0

ˆ
ˆ ˆ ˆL

w
z z z z

w w w

 α
 = + − +α − 

� � � �Α ΒΑ Β

0 1 0

0
0 1 0

1 0 1

0 1 1 0 0 1

1 0 1

0 1 0

0 1 0

0 1 0

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ

1 1 1
ˆ ˆ ˆ

Lu u u u

w
u u u

w w w

u w u w u w
w w w

u u u
w w w

w w w

= +α −

β
= + −

+ β −

+ β −
=

+ β −

 
+ β − 
 

=
 

+ β − 
 

Α Β
Α ΒΑ Β

Α Β
Α Β

ˆu wΑ Β ˆ1 wΑ Β

0 0 0

1 1 1

ˆˆ
ˆˆ

z z w
z z w
=

=

�

�

0 0 1 1 0 0

0 1 0

ˆ ˆ ˆ
ˆ ˆ ˆL

z w z w z w
z

w w w
+α −

=
+α −

� � �
�

Α Β
Α Β

that is linear in eye space. Since we are going to have to do this for several
such values (u, v, and perhaps even vertex colors), it is best to calculate the
value of once and then multiply it by the interpolated values of
The interpolation equation for is

so we linearly interpolate the denominator, that is, and do just one
division (per pixel) to get .

W Buffering
T he calculations necessary for texture mapping give us a new way to do

depth testing. Since we are going to calculate anyway, doing a divide
per pixel, we can simply use (which is really a scaled version of eye space
z) for depth testing. That is, instead of doing buffering, we would be
doing buffering. Note that this is not the same as the classic error of
simply interpolating (or z) linearly in screen space. buffering works
properly only if we calculate as the correct hyperbolic function of β (and
hence of screen x). This means that flat lines and planes are no longer flat
in a buffer scheme. Figure 10.1(c) shows the buffer version of Figures
10.1(a) and 10.1(b).

Note that with buffering, we do not need to specify a value for zn.
That’s good because this parameter has always been confusing to com-
puter graphics artists. Since it doesn’t appear at all in the expressions for
we don’t need to worry about it anymore.

Resolution Comparisons
Resolution Comparisons

U nder what conditions is the resolution of buffering better than buff-
ering? To properly compare these, we need to scale the anticipated

range of to lie between 0 and 1 just as we did for To do this, just set
the value of d in the perspective matrix to 1/zf . Since is just a scaled ver-
sion of eye space z, whatever quantization steps we use for will have the
same spacing in z: equal spacing for fixed point and (approximate) loga-
rithmic spacing for floating point.

To compare the sizes of quantization bins between the two schemes,
we can compare the slopes of the depth values as functions of z. A large
value of derivative is good. It means that a large variation in or gives

Resolution Comparisons 155

ŵ

ŵ

ˆ Lw

ŵ
ŵ

z�
ŵ

ŵ ŵ
ŵ

ŵ

ˆ1 ,LwΑ Β

ˆ ,w

ŵ z�

ŵ .z�
ŵ

ŵ

ŵ ˆ .u wΑ Β
ŵ

0 1 0

1
ˆ

1 1 1
ˆ ˆ ˆ

Lw

w w w

=
 

+ β − 
 

z� ŵ

a small variation in z. To review, we have the two competing depth
functions:

The derivatives of these functions are

So buffering gives better resolution if

that is, if

(Don’t panic, c will always be negative.) Applying the definitions of c and d,
this converts to

(10.2)

How can we interpret this? Figure 10.4
contains my visualization, showing the prop-
er choice of or buffering for all possible
values of zn. Here’s how it works. Each verti-
cal slice of the diagram stands for a choice of
zn as a proportion of zf . We will only need to
consider values of z/zf in the shaded part of
that slice, from the diagonal line (represent-
ing z = zn) up to the top line (representing z
= zf). The curved line is a plot of the right
side of Equation (10.2). If z/zf is below this
curve, we would be better off with buffer-
ing; if it’s above, we would be better off with

buffering. Of course, you have to pick one
or the other for the entire scene; this graph
just tells you how much of your z range is
likely to get into trouble. Finally, note that if

then buffering always wins.

156 Chapter Ten: W Pleasure, W Fun

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

0 1.9.8.7.6.5.4.3.2.1
z / zn f

z
/z

f

z zn f0.3=

w better^ z better~

Figure 10.4 Tradeoff between buffering and $w
buffering

z�

ˆ
bz c

w dz z
dz
+

= =�

2ˆ
d d c

w d z
dz dz dz

−
= =�

z�

2

c
d

dz
−
>

c
z

d
−

<

1
n f

f
n f

z z
z z

z z
<

−

z� ŵ

z�

ŵ

1
2 ,n fz z> z�

Summary
Summary

buffering is best if you must make zn very small, as for example, in
room walk-throughs. buffering is best if you can get away with mak-

ing zn a noticeable fraction of zf , as for example, in CAD, where you are
examining a single object held virtually in front of you. This works well in
this case mainly because the mapping for z to becomes pretty close to
linear. The breakpoint is at about zn = 0.3zf . (See the vertical line in Fig-
ure 10.4.) If zn is nearer than that, more of your z range would benefit from

buffering. If zn is farther than that, more of your z range would benefit
from buffering.

This is not the last word on the subject. We still need to investigate
the desirability of using floating point versus fixed point for depth resolu-
tion. And how much resolution do you actually need? Maybe you do need
more resolution for objects at small z distances because mistakes are more
visually apparent when they’re close to you.

Summary 157

Deleted Scene
Test Floating Point : Figure 10.3(b) suggests an alternative that can
use the effects of floating-point quantization spacing to cancel out the
nonlinearity in : instead of calculating we calculate Distant ob-
jects map to values near zero, and close objects map to values near 1 with
much more evenly spread quantization steps. We, of course, have to re-
verse the sense of our depth comparison test in this case. Of course, we
have to be careful that we aren’t fooling ourselves with this. We don’t
want to calculate after calculating the quantized (and information-
destroyed) We must build the calculation into the perspective matrix,
which then becomes

and the depth value calculation becomes

I haven’t pursued this.

0 0
0
0 0

a
d b d

c

 
 

− 
  

1 fn

f n

z zz
z

z z z

  −
 − = − 

�

1 z− �

z� ,z� 1 .z− �

1 z− �
.z�

ŵ z�

z�

ŵ
z�

