
Advanced Rendering: Ocean War

Ioannis Tsiompikas

Figure 1: Full ocean battle screenshot.

1 Introduction

The “ocean war” scene was implemented as a standalone C++ program,
using GLSL shaders for rendering all objects and effects. The “henge” 3D
engine was used, which I developed during the first semester for the graphics
coursework, with some modifications to make the particle systems shader-
based.

1



2 Effects

Next, I’m going to briefly describe the various effects implemented for the
ocean war scene.

2.1 Textured Battleships

The ship model was loaded from a Wavefront OBJ file, and duplicated to
create the two ships. Since it’s made up from multiple meshes some of which
are textured and some are not, there are two fragment shaders responsible
for rendering the ship parts: blinn.p.glsl and blinn_tex.p.glsl, which
implement the blinn/phong reflectance model per pixel with or without tex-
ture mapping. A single vertex shader is used for both cases: blinn.v.glsl.

Figure 2: Battleship with animated flag, and fire & smoke particles.

2.2 Smoke and Fire

The henge particle systems were modified to offload billboarding to the
GPU. The motion of the particles is still calculated in the CPU since oth-
erwise a much more complicated render-to-texture simulation shader pass
would be needed to perform integration and update particle positions. The
billboarding particle shaders are: part.v.glsl and part.p.glsl.

2.3 Animated Flag

The topmost (white) battleship flag was assigned a vertex shader that waves
the cloth a flag little along the y axis: flag.v.glsl. To do that, time was

2



passed as a unifrom, and the local coordinate system vertex position was
calculated through a sinusoidal function of time an offset along the x axis.

2.4 Sea Surface

The sea surface animation was performed per pixel through bump mapping.
The “elevation” of the sea surface at each fragment is evaluated through a
fractal sum of perlin noise at different octaves (fBm), which is then used to
calculate the fragment normal using the partial derivatives of the heightfield
and constructing tangent and binormal vectors. The fragment normal is then
used to calculate the view reflection vector in order to access the enviroment
cube map. (see shaders: sea.v.glsl and sea.p.glsl).

Figure 3: Ocean waves and ship wake.

2.5 Wakes due to Ship Motion

Since the motion of the battleships is a fixed counter-clockwise rotation
around the center of the sea surface quad, a fixed “wake heightfield” was
created in an image processing program. That wake texture is rotated ap-
propriately by the sea fragment shader, and its contribution is added to the
overall heightfield of the sea waves before calculating the fragment normal
for the cubemap lookup.

2.6 Bumpy Island

A single mesh that makes up the little island in the middle, the mountains
in the distance and the underwater seabed, is calculated during loading time
by displacing the vertices of a tesselated quad using a low frequency, perlin
noise based fBm. Also at loading time, a normal map is calculated for the
that terrain mesh using the high-frequency part of the fBm. The terrain
shaders (land.v.glsl and land.p.glsl) perform per-fragment illumina-
tion using the aforementioned normal map. Finally, two color textures are

3



Figure 4: Normal-mapped island and mountains.

used, blended together as a function of height, to produce the effect of grass
growing a few meters after the shoreline.

2.7 Underwater Fog

Figure 5: Underwater fog effect.

4



The same land shader mentioned above is also responsible for attenuating
the color of the underwater parts of the terrain as a function of distance from
the viewer, to produce an underwater fog effect (see figure 5).

2.8 Sky

The sky is a simple cubemap found on the internet, and mapped onto a
large sphere that encloses the scene. The sky shaders (sky.v.glsl and
sky.p.glsl) simply look up the cubemap color using the normal vectors of
the sphere.

Figure 6: Sky cubemap.

2.9 Airplane

The shinny airplane is rendered with a per-fragment blinn shader that also
uses the cubemap to make it look shinier (plane.v.glsl & plane.p.glsl).
The afterburner jet of flame from the back of the plane is another instance
of the GPU-billboarded particle system mentioned above.

2.10 Submarine

The sumbarine is rendered with the regular per-fragment blinn shader, mod-
ified to attenuate the color of the submarine as a function of distance, to
match the fog of the underwater terrain shader. Also the same particle
system was used to render bubbles at the back of the submarine.

5



Figure 7: Airplane with afterburner particles.

Figure 8: Submarine and its bubbles.

6


