
DEPARTMENT OF COMPUTER SCIENCE

COURSEWORK ASSESSMENT DESCRIPTION

MODULE DETAILS:

Module Number:

08961
Semester:

 1

Module Title:

Real-Time Computer Graphics

Lecturer:

DPMW / DDM

COURSEWORK DETAILS:

Coursework
Assessment Number:

 1 of 1

Title of Assignment:

Scaletrix Game

Format:

 Program Report Demonstration

Method of Working:

 Individual

Workload Guidance: Typically, you should
expect to spend between

75 and 125
hours on this
assessment

Length of
Submission:

This assignment should be no
more than:

1500 words

PUBLICATION:

Date of issue:

Week 2

SUBMISSION:

ONE copy of this
assignment should
be handed in via:

 E-Bridge
If Other

(please state method)

Time and date for
submission:

Source Code
Report

Demonstration

9:30 Friday 19th December 2008
9:30 Monday 19th January 2009

Between 19th & 30th January 2009

If multiple hand–ins
please provide
details
(as appropriate):

The assignment should be handed in no later than the time and date shown above, unless an
extension has been authorised on a Request for an Extension for an Assessment (Mit Circs)
form which is available from the Office or http://www.student-
admin.hull.ac.uk/downloads/Mitcircs.doc. The extension form, once authorised by the lecturer
concerned, should be sent to Amanda Millson.

MARKING:

Marking will be by:

 Student Name

http://www.student-admin.hull.ac.uk/downloads/Mitcircs.doc
http://www.student-admin.hull.ac.uk/downloads/Mitcircs.doc

BEFORE submission, each student must complete the correct departmental coursework cover
sheet dependant upon whether the assignment is being marked by student number, student
name, group number or group name. This is obtainable from the departmental student intranet
at
http://intra.net.dcs.hull.ac.uk/sites/home/student/ACW%20Cover%20Sheets/Forms/AllItems.as
px

ASSESSMENT:

The assignment is
marked out of:

100
and is
worth

 100
% of the
module
marks

ASSESSMENT STRATEGY AND LEARNING OUTCOMES:
The overall assessment strategy is designed to evaluate the student’s achievement of the
module learning outcomes, and is subdivided as follows:

LO Learning Outcome Method of Assessment
{e.g. report, demo}

1

2

3

4

5

Design 3D graphics programs for real-time
Graphics

Describe the algorithms and techniques involved
in 3D graphics

Implement 2D and 3D graphics programs in
C/C++ using the OpenGL API

Implement simple collision detection/response
Algorithms

Use the mathematical techniques of vectors and
matrices

Software Application, Report

Report

Software Application

Software Application

Software Application

Assessment Criteria Contributes to
Learning Outcome

Mark

Quality of implementation

Quality of OpenGL

Quality of portfolio

1, 4, 5

3

1, 2

70

20

10

FEEDBACK

Feedback will be
given via:

 Mark Sheet
Feedback will
be given via:

 N/A

Exemption
(staff to explain why)

Feedback will be provided no later than 20 working days after the submission date.

This assessment is set in the context of the learning outcomes for the module and does not by
itself constitute a definitive specification of the assessment. If you are in any doubt as to the
relationship between what you have been asked to do and the module content you should take
this matter up with the member of staff who set the assessment as soon as possible.

You are advised to read the NOTES regarding late penalties, over-length assignments, unfair

http://intra.net.dcs.hull.ac.uk/sites/home/student/ACW%20Cover%20Sheets/Forms/AllItems.aspx
http://intra.net.dcs.hull.ac.uk/sites/home/student/ACW%20Cover%20Sheets/Forms/AllItems.aspx

means and quality assurance in your student handbook, also available on the department’s
student intranet at: http://intra.net.dcs.hull.ac.uk/sites/home/student/default.aspx. In
addition, please note that if one student gives their solution to another student who submits it
as their own work, BOTH students are breaking the unfair means regulations, and will be
investigated.

In case of any subsequent dispute, query, or appeal regarding your coursework, you are
reminded that it is your responsibility, not the Department’s, to produce the assignment in
question.

Assignment Details

08960/08961 Portfolio Assessment

Derek Wills, Warren Viant and Darren McKie

1.0 What is a portfolio assessment?

The two modules 08960 C++ Programming and Design and 08961 Real-Time Computer Graphics are
assessed through a single portfolio of work, allowing you to develop a substantial piece of work
developed in C++ and demonstrating your ability and knowledge of computer graphics. Throughout
the semester you will be asked to design, develop and implement a real-time simulation based upon
the scenario outlined in the later sections of this document. You will be asked to complete a number
of sub-tasks that together should allow you to successfully achieve the Learning Outcomes for both
modules whilst simultaneously contributing to your Personal Development Plans. You will need to
record the results of these individual sub-tasks since at the end of the semester you will be asked to
include in your portfolio a critique of your work and to reflect upon the complete design /
implementation process. This will include an indication of how you might approach future coursework
assignments in semester 2. In order that you gain feedback on your progress, your work will be
considered at two stages, a mid-term formative (marks will not be awarded but you will receive
comments on your progress) assessment in week 7 and a final assessment at the end of the semester.
For the final assessment, a clear indication will be given of the marking criteria, which will be based on
your design, code, report and demonstration/presentation. A development schedule is also included,
and we strongly suggest that you follow this.

2.0 Aim

The aim of this coursework is to produce a graphical simulation of a slot car racing game. For those of
you that don’t know what this is, a typical example of slot car racing can be found at
http://www.scalextric.com/. For this coursework you will be required to write a program that displays
the racing track and through a simple interface, allows you to control two competing cars. The
emphasis will be on the visual appearance of the track, the cars, surrounding scenery and a limited
number of special effects. The physics of racing will be considerably simplified and only required to a
level that makes the game playable.

3.0 Concept Design

The detailed layout of the racetrack is left to you. However certain features must be apparent in your
final deliverable.

1. The overall look of the track and scenery should be as close to a real physical game as possible.
Therefore the track should be textured with clearly identifiable slots for the cars to run on.
The racetrack should be constructed from a set of standard track sections with joints between
them. Track sections should be defined as part of a library and specified in an external file.
Scenery elements should at least include: grass, trees, starting grid, viewing stands, advertising

http://intra.net.dcs.hull.ac.uk/sites/home/student/default.aspx
http://www.scalextric.com/

hoardings, a sky/night dome, a tunnel and speed limit signs. Textures should be used to
enhance the realism throughout your visualisation. The track should have at least two
crossover sections (where cars swap from one side of the track to the other.

2. Cars should be controlled by a simple accelerator/break arrangement (A/Z for car 1 and >/; for
car 2). The wheels of a car should rotate at an appropriate speed based on the speed of that
car. The wheel should turn appropriately as the car goes round a bend. You should be able to
label track sections with a maximum speed allowable, defined in a configuration file. If the
cars’ speed is within 25% of the maximum speed allowed then the tyres should start to smoke
using a particle system. If this speed is exceeded then the car should jump from its slot and
skid off the track. If it strikes the opponent car whilst doing this, both cars should skid off the
track. A time penalty (stored within a configuration file) should be defined that specifies the
time passed before the car is placed back on the track at the position of the accident. The
construction of the car does not have to be realistic (see the Library document for an example).

3. Day and night racing should be supported and therefore your lighting and shading should be
adjusted to reflect this. In the day you should include sufficient lights to give the appearance of
a sunlit day. However, you will find that a single light source is unlikely to be sufficient to give
this effect. At night, cars should have headlights that illuminate the track. The light source for
the headlights of the car should be implemented as a shader effect. You should also include
some low intensity light to simulate ambient lighting from the moon and stars. Surfaces
should react with the lighting in a realistic way dependent on the position and surface
properties.

4. To help assess your work you are also required to support a wireframe viewing mode and a
non-textured, smooth shaded mode as well as full texturing.

5. At least the following camera views should be supported:
a. Overview: this should allow you to see all the track and is probably the easiest mode for

racing
b. Driver views: a camera positioned in either of the two cars looking forward
c. Crowd views: cameras located in one or more positions around the track that give the

view seen by spectators.
6. Advertising hoardings should include static images.
7. A large video screen should be placed near to the finish line that displays the driver’s view of

the race
8. One section of your track should be flooded. You should be able to see the track below

through the water and you should also see the car reflected in the water as it passes over it.
As the car passes over the water, a spray of water should be generated from the tyres. The
spray should be implemented as a particle system.

9. Trees should be represented as billboards. These should operate in two modes:
a. Static, the billboards are fixed in world coordinates. In this case the billboard should be

made from two texture mapped polygons (with alpha transparency) perpendicular to
each other.

b. Dynamic, the billboards rotate to always face the camera. In this case they can be
constructed from a single texture mapped polygon.

10. The games should be playable in two modes:
a. Single player mode: In this mode the second car should be computer controlled. Since

AI is not a learning outcome of this work, this may be as simple as running the second
car around the track at a constant speed. However, if you want to use this coursework
later when applying for jobs then you may want to include more advanced AI (but you
should take care not to spend too much time on this).

b. Two player mode: In this mode two players race against each other using the keys
specified in 2.

11. The final display presented in your simulation depends upon the mode of play specified in 10.
a. In single player mode, the camera views specified in 5 should be user selectable.

b. In dual player mode, only two views are allowed. The first is a dual driver display (top
half of the screen for driver 1, bottom half for driver 2). The second view is the
overview described in 5a, allowing both player to see their cars simultaneously.

However, as well as the 3-dimensional visualisation you should include a 2-dimensional
representation of the analogue speedometer, the lap time and race time. You should also
indicate the number of laps remaining (the total number of laps in a game should be set in
your configuration file).

12. At the start of the game you should ask if it is a single or two player game. You should then ask
for the name(s) of the driver(s).When the final lap is completed, you should indicate who won
the race and the time they took. This lap time should be recorded in a log file and a league
table of the 10 best laps displayed. You should also include a function to record your race and
offer the opportunity for a replay of events, either at the end of the race or at a future
demonstration of your work. During the replay the user should be able to select the different
views outlined in 4.

13. You should include a sky dome that has moving textures of clouds according to whether the
game is in day or night mode as described in 3.

14. At some point in your track layout you should have a tunnel with lights, these should be
implemented as spotlights shining down. Due to numeric inaccuracies you may find that your
track sections don’t align correctly from start to end. The tunnel is a good way to disguise this.

4.0 Hints for Writing the Simulation
The following may help you complete your work successfully.

1. Start Early!
2. Produce a paper design of your racetrack and a storyboard for your simulation
3. Produce a top level design
4. Prototype your ideas to help produce a more detailed design
5. Test your software at each stage of development
6. Document as you go

5.0 A suggested Schedule
How you plan your time is really your own decision and will depend largely on your previous
experience. You will be asked to reflect on how you developed your simulation, at the end of the
project. However, included below is an initial suggestion of what you should do and when. This does
not include the complete functionality requested and you should only use it as a guide to your own
time management. Please note that this is in no way definitive and it is your responsibility to project
manage your time throughout the semester.
You are strongly advised to work through the OpenGL tutorials as early as possible. The plan below
indicates the latest time that you should complete them.

Weeks Suggested Work Deliverables

2,3 Initial concept design for the simulation,
including storyboards for the main
visual components. Specify timescales
and workplan.

OpenGl Tutorials: 1-6

Portfolio: Storyboards,
workplan/timescales (produce a
task breakdown and a Gantt
Chart).

4,5 Design and implement the interface to
read the information for defining the
track and other configuration data.
Initial perspective prototype display of
the track.

OpenGL Tutorials: 7-12

Portfolio: Configuration file
specification and parser. Top
level design of the simulator.

6,7 Further development of track display
with textures. Inclusion of the sky
dome and grass terrain. Implement
other camera views including driver
view on advertising hoarding.

OpenGL Tutorials: 13-17

Portfolio: Revised software
design. Implementation of
perspective view.
Wk 7: Formative assessment
of portfolio. A demonstration
of your software may be
required.

8 Include speed limit signs and remaining
advertising hoardings. Place trees into
the scene. Simple car controlled by
keyboard and AI car. Design particle
system design and coding.

OpenGL Tutorials: 18-20

Portfolio: include design of
particle systems and
description of how trees have
been included.

9 Implement particle system for both
water spray and smoke. Include
reflective water into scene.

OpenGL Tutorials: 21-24

Portfolio: description of how
reflections done on water.

10 Include night scene. Shader code for
front lights of the car. Place tunnel with
lights

Portfolio: Document shader
design and code.

11 Implement speedometer and other
information for user. Split screen mode
for two player use.

12 Complete remaining features and bug
fix.

End of week: Submit code.

Christmas
break

13 Complete portfolio and write report End of week: Submit
portfolio and documentation.

6.0 Report Details

Design (08960)

1. Class diagram(s) containing main classes
2. Class diagram(s) containing service / utility classes
3. A textual description giving the name, role and responsibilities of each class [keep this brief]
4. Interaction diagram(s) for significant components of the software design
5. A critique of the design [1 page max]

Should include details on:
a. The merits of the design?
b. Weaknesses of the design?
c. What has changed in the design?
d. What would you now do differently?

6. Reflect on you project management, indicating lessons learnt for next semester etc. [1 page
max]

Graphics (08961)

1. Document and critique of the algorithms used. [max 3 pages for text/equations, an additional
page of diagrams can be included]
Should also include details on:

a. How the reflection of the car in the water was achieved;
b. How the tyre smoke and water spray was achieved.

Marks will be lost if you exceed page limits (see handbook for Over length penalties)

