
3D Input

Ioannis Tsiombikas

nuclear@member.fsf.org

May 9, 2008



Part 1: Intuitive 3D Interaction

Part 1: Intuitive 3D Interaction



Interacting with 3D Environments

Common input devices inadequate for 3D interaction.

Keyboard (arrow keys?)

Mouse

Joystick / Pad

Trackball

Touchpad



How do we cope?

Design our programs to work well with limited degrees of freedom.
Example: most 3D computer games.

Come up with complicated user interaction schemes. Example:
most 3D modelling software.



The real solution: 6-dof input devices



6 Degrees of Freedom

6-dof devices allow full 3D control: translation along all 3 axes,
and rotation around all 3 axes.



3Dconnexion drivers

The space navigator is a USB HID device. All input events are
forwarded to user space through the linux event interface (evdev).

3Dconnexion provides:

3dxsrv, a user space driver (daemon) apps talk to, in order to
get 6dof events.

magellan, an SDK (library) apps may use to communicate
with the daemon.



Problem is. . .

. . . unfortunately, they both SUCK.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



What’s wrong?

What’s wrong with the driver?

It’s proprietary, binary only, 32bit x86 only.

It uses a convoluted X11-based protocol to talk to clients.

It depends on motif (?!)

It doesn’t work most of the time . . .

What’s wrong with the SDK?

It’s proprietary, source given with restrictive licensing terms.

The API is an ugly, inconsistent mess.



The spacenav project

The spacenav project, is an effort to provide free software
alternatives to both 3dconnexion’s driver and SDK library.

http://spacenav.sourceforge.net



Spacenav project: spacenavd

Spacenavd is the free replacement for the 3dxsrv driver.

Free software, released under the GNU GPL v3.

New simpler, and more sane, application communication
protocol, based on unix domain sockets.

Supports the 3d connexion X11 protocol, making it a
transparent drop-in replacement for the proprietary driver.

Separate GUI configuration tool available.



Spacenav project: spacenavd

Spacenavd is the free replacement for the 3dxsrv driver.

Free software, released under the GNU GPL v3.

New simpler, and more sane, application communication
protocol, based on unix domain sockets.

Supports the 3d connexion X11 protocol, making it a
transparent drop-in replacement for the proprietary driver.

Separate GUI configuration tool available.



Spacenav project: spacenavd

Spacenavd is the free replacement for the 3dxsrv driver.

Free software, released under the GNU GPL v3.

New simpler, and more sane, application communication
protocol, based on unix domain sockets.

Supports the 3d connexion X11 protocol, making it a
transparent drop-in replacement for the proprietary driver.

Separate GUI configuration tool available.



Spacenav project: spacenavd

Spacenavd is the free replacement for the 3dxsrv driver.

Free software, released under the GNU GPL v3.

New simpler, and more sane, application communication
protocol, based on unix domain sockets.

Supports the 3d connexion X11 protocol, making it a
transparent drop-in replacement for the proprietary driver.

Separate GUI configuration tool available.



Spacenav project: libspnav

Libspnav is the free replacement SDK library.

Free software, released under the 3-clause BSD license.

Works with both spacenavd and the proprietary 3dxsrv
daemon.

New simple, orthogonal API.

Source-compatible magellan API wrapper. Existing apps may
be recompiled with libspnav to remove magellan licensing
terms.



Spacenav project: libspnav

Libspnav is the free replacement SDK library.

Free software, released under the 3-clause BSD license.

Works with both spacenavd and the proprietary 3dxsrv
daemon.

New simple, orthogonal API.

Source-compatible magellan API wrapper. Existing apps may
be recompiled with libspnav to remove magellan licensing
terms.



Spacenav project: libspnav

Libspnav is the free replacement SDK library.

Free software, released under the 3-clause BSD license.

Works with both spacenavd and the proprietary 3dxsrv
daemon.

New simple, orthogonal API.

Source-compatible magellan API wrapper. Existing apps may
be recompiled with libspnav to remove magellan licensing
terms.



Spacenav project: libspnav

Libspnav is the free replacement SDK library.

Free software, released under the 3-clause BSD license.

Works with both spacenavd and the proprietary 3dxsrv
daemon.

New simple, orthogonal API.

Source-compatible magellan API wrapper. Existing apps may
be recompiled with libspnav to remove magellan licensing
terms.



Project status

Both spacenavd and libspnav work fine as replacements of their
proprietary counterparts on linux.

Future plans:

Support more UNIX systems (FreeBSD is the next target).

Support alternative event sources (XInput, old serial
spacemice).

Provide greater configurability.

Push the driver and SDK to GNU/Linux distributions.



Project status

Both spacenavd and libspnav work fine as replacements of their
proprietary counterparts on linux.

Future plans:

Support more UNIX systems (FreeBSD is the next target).

Support alternative event sources (XInput, old serial
spacemice).

Provide greater configurability.

Push the driver and SDK to GNU/Linux distributions.



Part 2: Immersion

Part 2: Immersion



VR head-tracking

The process of actively tracking the user’s head position in relation
to the screen, and translating the user’s head motions into
corresponding movement of the viewpoint in the virtual
environment.



My VR head-tracking experiment

Inspired by: CAVE, wii-remote-guy.

Main objective: simplicity. No need for expensive electromagnetic
sensors (CAVE), or exotic input devices (wii). Commodity
hardware should be used to achieve the same effect (web camera).

Three steps:

Capture image from web camera.

Process image to find the 2D image coordinates of the user’s
head.

Calculate 3D position relative to the screen, and set it as the
new 3D environment viewpoint.



My VR head-tracking experiment

Inspired by: CAVE, wii-remote-guy.

Main objective: simplicity. No need for expensive electromagnetic
sensors (CAVE), or exotic input devices (wii). Commodity
hardware should be used to achieve the same effect (web camera).

Three steps:

Capture image from web camera.

Process image to find the 2D image coordinates of the user’s
head.

Calculate 3D position relative to the screen, and set it as the
new 3D environment viewpoint.



My VR head-tracking experiment

Inspired by: CAVE, wii-remote-guy.

Main objective: simplicity. No need for expensive electromagnetic
sensors (CAVE), or exotic input devices (wii). Commodity
hardware should be used to achieve the same effect (web camera).

Three steps:

Capture image from web camera.

Process image to find the 2D image coordinates of the user’s
head.

Calculate 3D position relative to the screen, and set it as the
new 3D environment viewpoint.



My VR head-tracking experiment

Inspired by: CAVE, wii-remote-guy.

Main objective: simplicity. No need for expensive electromagnetic
sensors (CAVE), or exotic input devices (wii). Commodity
hardware should be used to achieve the same effect (web camera).

Three steps:

Capture image from web camera.

Process image to find the 2D image coordinates of the user’s
head.

Calculate 3D position relative to the screen, and set it as the
new 3D environment viewpoint.



Step 1: Video frame capture

Created a reusable, fairly generic, webcam library: “libwcam”.
Captures frames from a webcam (or any other video input device)
using video4linux2.
Important considerations for video frame capture:

Fast framerate is needed (30 fps ideally).

Auto exposure, and auto white balance will screw up the
image processing algorithm, so they must be disabled.



Step 2: Image Processing

Devised a very simple algorithm to detect two clusters of
similarly-colored pixels in the image within a given tolerance.



Step 3: Calculate 3D head position

Use image distance between the two points to calculate depth.

Invert the webcam projection to get 3D position.



Implementation details

Program A

Runs continuously grabbing frame off the camera at a fixed
framerate.

Processes the image and extracts 2 points.

Allows user interaction to set target color, threshold etc.

Listens to a UNIX socket for other processes interested in
these points, and feeds them with the data as soon as they
are available.

Program B

Runs the OpenGL virtual environment.

Connects to program A through the UNIX socket and as soon
as it gets the data through the socket it calculates 3D
position and updates display.



Implementation details

Program A

Runs continuously grabbing frame off the camera at a fixed
framerate.

Processes the image and extracts 2 points.

Allows user interaction to set target color, threshold etc.

Listens to a UNIX socket for other processes interested in
these points, and feeds them with the data as soon as they
are available.

Program B

Runs the OpenGL virtual environment.

Connects to program A through the UNIX socket and as soon
as it gets the data through the socket it calculates 3D
position and updates display.



The End

Thank you for listening.
Questions ?


	3D Input with 2D Devices
	6-DoF Input Devices
	Virtual Reality Input Devices

